

# MANONMANIAM SUNDARANAR UNIVERSITY TIRUNELVELI – 12

# **M.Sc. DEGREE COURSE IN PHYSICS**

# TAMILNADU STATE COUNCIL FOR HIGHER EDUCATION, CHENNAI – 600 005

FROM THE ACADEMIC YEAR 2024 – 2025

# PREAMBLE

| TANSCHE REGULATIONS ON LEARNING OUTCOMES-BASED CURRICULUM<br>FRAMEWORK FOR POSTGRADUATE EDUCATION |                                                                                                                                                                                   |  |  |  |  |  |
|---------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Programme M. Sc., Physics                                                                         |                                                                                                                                                                                   |  |  |  |  |  |
| Programme Code                                                                                    |                                                                                                                                                                                   |  |  |  |  |  |
| Duration                                                                                          | The course of study shall be on Semester System. The two year post<br>graduate programme in M.Sc., Physics consists of four semesters under<br>Choice Based Credit System (CBCS). |  |  |  |  |  |

#### PROGRAM OBJECTIVES AND OUTCOMES

| <b>PO1</b> | The primary objective of the M.Sc (Physics) program is to offer an enriched curriculum           |
|------------|--------------------------------------------------------------------------------------------------|
|            | that incorporates the latest scientific developments in physics and its interdisciplinary areas, |
|            | addressing the needs of contemporary academia, research, and industry.                           |
| PO2        | To provide comprehensive knowledge in theoretical, experimental, and computational               |
|            | physics, ensuring a thorough understanding of the subject.                                       |
| PO3        | To educate students on the core subjects of physics, enabling them to acquire knowledge          |
|            | and gain a deep understanding of the laws, concepts, and principles of physics, as well as to    |
|            | solve analytical problems.                                                                       |
| PO4        | To enhance knowledge through problem-solving exercises, projects, seminars, participation        |
|            | in scientific events, and study visits.                                                          |
| PO5        | To prepare students for careers in teaching, research laboratories, and public/private sector    |
|            | units, while also fostering entrepreneurial skills.                                              |

#### PROGRAMME SPECIFIC OUTCOMES (PSOs)

| PSO1 | Possess a deep understanding of the fundamental concepts of physics and comprehend         |
|------|--------------------------------------------------------------------------------------------|
|      | how various natural phenomena adhere to the laws of physics.                               |
| PSO2 | Be capable of identifying, formulating, and analyzing scientific problems using basic      |
|      | principles.                                                                                |
| PSO3 | Develop strong problem-solving skills and be able to apply mathematical tools to           |
|      | understand and describe physical problems.                                                 |
| PSO4 | Be proficient in handling laboratory equipment, gaining knowledge of advanced              |
|      | experimental techniques, and successfully interpreting results for research and industrial |
|      | applications.                                                                              |
| PSO5 | Acquire effective computational skills for application to scientific and technological     |
|      | problems.                                                                                  |
| PSO6 | Become familiar with contemporary research across various fields of physics                |

Upon successful completion of the M.Sc. Physics program, students will:

The curriculum for the P.G. Physics for universities and colleges is revised as per Learning Outcomes- based Curriculum Framework (LOCF). The learner centric courses are designed to enable the students to progressively develop a good understanding of the concepts of various domains in physics. Significant modification is the inclusion of the courses to equip students to face challenges in industries and make them employable. Skill development in different spheres and confidence building are given a special focus.

| Semester-I                           | Credit | Hours | Semester-II                             | Credit | Hours | Semester-III                                 | Credit | Hours | Semester-IV                                                                      | Credit | Hours |
|--------------------------------------|--------|-------|-----------------------------------------|--------|-------|----------------------------------------------|--------|-------|----------------------------------------------------------------------------------|--------|-------|
| Core-I                               | 5      | 7     | Core-IV                                 | 5      | 6     | Core-VII                                     | 5      | 6     | Core-XI                                                                          | 5      | 6     |
| Core-II                              | 5      | 7     | Core-V                                  | 5      | 6     | Core-VIII                                    | 5      | 6     | Core-XII                                                                         | 5      | 6     |
| Core – III                           | 4      | 6     | Core – VI                               | 4      | 6     | Core – IX                                    | 5      | 6     | Project with viva voce                                                           | 7      | 10    |
| Elective -I<br>Discipline<br>Centric | 3      | 5     | Elective – III<br>Discipline<br>Centric | 3      | 4     | Core – X                                     | 4      | 6     | Elective - VI<br>(Industry /<br>Entrepreneurship)<br>20% Theory<br>80% Practical | 3      | 4     |
| Elective-II<br>Generic:              | 3      | 5     | Elective -IV<br>Generic:                | 3      | 4     | Elective - V<br>Discipline<br>Centric        | 3      | 3     | Skill Enhancement<br>course / Professional<br>Competency Skill                   | 2      | 4     |
|                                      |        |       | Skill<br>Enhancement<br>I               | 2      | 4     | 3.6 Skill<br>Enhancement<br>II               | 2      | 3     | Extension Activity                                                               | 1      |       |
|                                      |        |       |                                         |        |       | 3.7<br>Internship/<br>Industrial<br>Activity | 2      | -     |                                                                                  |        |       |
|                                      | 20     | 30    |                                         | 22     | 30    |                                              | 26     | 30    |                                                                                  | 23     | 30    |

# TANSCHE Template for P.G., Programmes

**Total Credit Points -91** 

#### Choice Based Credit System (CBCS), Learning Outcomes Based Curriculum Framework (LOCF) Guideline Based Credits and Hours Distribution System for all Post – Graduate Courses including Lab Hours First Year – Semester – I

| Part | List of Courses                   | Credits | No. of<br>Hours |
|------|-----------------------------------|---------|-----------------|
|      | Core – I                          | 5       | 7               |
|      | Core – II                         | 5       | 6               |
|      | Core Practical - I                | 4       | 6               |
|      | Elective – I (Discipline Centric) | 3       | 6               |
|      | Elective – II (Generic)           | 3       | 5               |
|      |                                   | 20      | 30              |

# Semester-II

| Part | List of Courses                           | Credits | No. of<br>Hours |
|------|-------------------------------------------|---------|-----------------|
|      | Core – III                                | 5       | 6               |
|      | Core – IV                                 | 5       | 6               |
|      | Core Practical -II                        | 4       | 6               |
|      | Elective – III (Discipline Centric)       | 3       | 4               |
|      | Elective – IV (Industry Entrepreneurship) | 3       | 4               |
|      | Skill Enhancement Course - I              | 2       | 4               |
|      |                                           | 22      | 30              |

| Second | Year - | Semester - | - III |
|--------|--------|------------|-------|

| Part | List of Courses                           | Credits | No. of<br>Hours |
|------|-------------------------------------------|---------|-----------------|
|      | Core –V                                   | 5       | 6               |
|      | Core –VI                                  | 5       | 6               |
|      | Core - VII                                | 5       | б               |
|      | Core Practical – III<br>(Industry Module) | 4       | 6               |
|      | Elective – V (Discipline Centric)         | 3       | 3               |
|      | Skill Enhancement Course - II             | 2       | 3               |
|      | Internship / Industrial Activity          | 2       | -               |
|      |                                           | 26      | 30              |

#### Semester-IV

| Part | List of Courses                                                | Credits | No. of<br>Hours |  |  |
|------|----------------------------------------------------------------|---------|-----------------|--|--|
|      | Core – VIII                                                    | 5       | 6               |  |  |
|      | Core Practical - IV                                            | 4       | 6               |  |  |
|      | Project with VIVA VOCE                                         | 8       | 8               |  |  |
|      | Elective – VI (Generic)                                        | 3       | 6               |  |  |
|      | Skill Enhancement Course – III / Professional Competency Skill | 2       | 4               |  |  |
|      | Extension Activity                                             | 1       | -               |  |  |
|      |                                                                | 23      | 30              |  |  |
|      | Total 91 Credits for PG Courses                                |         |                 |  |  |

|                        | <b>METHODS OF EVALUATION - Theory</b> |           |  |  |  |
|------------------------|---------------------------------------|-----------|--|--|--|
|                        | Continuous Internal Assessment Test   |           |  |  |  |
| Internal               | Assignments / Snap Test / Quiz        |           |  |  |  |
| Evaluation             | Seminars                              | 25 Marks  |  |  |  |
|                        | Attendance and Class Participation    |           |  |  |  |
| External<br>Evaluation | End Semester Examination              | 75 Marks  |  |  |  |
|                        | Total                                 | 100 Marks |  |  |  |

|                    | METHODS OF ASSESSMENT                                                                                                                                                                                                                                                                                                                                               |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Remembering (K1)   | <ul> <li>The lowest level of questions require students to recall information from the course content</li> <li>Knowledge questions usually require students to identify information in the textbook.</li> </ul>                                                                                                                                                     |
| Understanding (K2) | • Understanding of facts and ideas by comprehending organizing, comparing, translating, interpolating and interpreting in their own words. The questions go beyond simple recall and require students to combined at a together                                                                                                                                     |
| Application (K3)   | <ul> <li>Students have to solve problems by using/applying a concept<br/>learned in the classroom.</li> <li>Students must use their knowledge to determine a exact<br/>response.</li> </ul>                                                                                                                                                                         |
| Analyze (K4)       | <ul> <li>Analyzing the question is one that asks the students to break<br/>down given problem into its component parts.</li> <li>Analyzing requires students to identify reasons causes or<br/>motives and reach conclusions or generalizations.</li> </ul>                                                                                                         |
| Evaluate (K5)      | <ul> <li>Evaluation requires an individual to make judgment on the given problem / question.</li> <li>Questions to be asked to judge the value of an idea, a character, a work of art, or a solution to a problem.</li> <li>Students are engaged in decision-making and problem—solving.</li> <li>Evaluation questions do not have single right answers.</li> </ul> |
| Create (K6)        | <ul> <li>The questions of this category challenge students to get engaged in creative and original thinking.</li> <li>Developing original ideas and problem solving skills</li> </ul>                                                                                                                                                                               |

# M.Sc PHYSICS - COURSE STRUCTURE FIRST SEMESTER

| COURSE                              | NAME OF THE COURSE                                                                                                                                                  | Instruction<br>Hours | Credits | Exam Hours | MAX<br>MARKS |     |
|-------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|---------|------------|--------------|-----|
| COMPONENTS                          |                                                                                                                                                                     |                      |         |            | CIA          | EXT |
| Core-I                              | Mathematical Physics                                                                                                                                                | 7                    | 5       | 3          | 25           | 75  |
| Core-II                             | Classical Mechanics and Relativity                                                                                                                                  | 6                    | 5       | 3          | 25           | 75  |
| Core Practical- I                   | Practical-I: General Physics and Electronics<br>Experiments – I                                                                                                     | 6                    | 4       | 6          | 50           | 50  |
| Elective- I<br>(Discipline Centric) | <ul><li>Choose any one from</li><li>a) Energy Physics</li><li>b) Astro Physics</li><li>c) Plasma Physics</li></ul>                                                  | 5                    | 3       | 3          | 25           | 75  |
| Elective-II<br>(Generic)            | <ul> <li>Choose any one from</li> <li>a) Linear and Digital ICs and Applications</li> <li>b) Digital Communication</li> <li>c) Communication Electronics</li> </ul> | 6                    | 3       | 3          | 25           | 75  |
|                                     |                                                                                                                                                                     | 30                   | 20      |            |              |     |

#### SECOND SEMESTER

| COURSE                                          |                                                                                                                                                        | uo                   |         | Hours   | MAX<br>MARKS |     |
|-------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|---------|---------|--------------|-----|
| COURSE<br>COMPONENTS                            | NAME OF THE COURSE                                                                                                                                     | Instruction<br>Hours | Credits | Exam Ho | CIA          | EXT |
| Core-III                                        | Statistical Mechanics                                                                                                                                  | 6                    | 5       | 3       | 25           | 75  |
| Core-IV                                         | Quantum Mechanics –I                                                                                                                                   | 6                    | 5       | 3       | 25           | 75  |
| Core Practical-II                               | Practical – II: General Physics and Electronics<br>Experiments – II                                                                                    | 6                    | 4       | 6       | 50           | 50  |
| Elective- III<br>(Discipline Centric)           | <ul> <li>Choose any one from</li> <li>a) Advanced Optics</li> <li>b) Non Linear Dynamics</li> <li>c) Physics of Nano Science and Technology</li> </ul> | 4                    | 3       | 3       | 25           | 75  |
| Elective – IV<br>(Industry<br>Entrepreneurship) | Choose any one from<br>a) Microprocessor 8085&Microcontroller<br>8051<br>b) Material Science<br>c) Characterization of Materials                       | 4                    | 3       | 3       | 25           | 75  |
| *SEC – I<br>(PCS)                               | Physics for Competitive Examinations                                                                                                                   | 4                    | 2       | 3       | 25           | 75  |
|                                                 |                                                                                                                                                        | 30                   | 22      |         |              |     |

\*SEC: Skill Enhancement Course – Professional Competency Skill

| COURSE                                   |                                                                                                                                                    | tion                 |         | Hrs    | MA<br>MAI |     |
|------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|---------|--------|-----------|-----|
| COMPONENTS                               | NAME OF THE COURSE                                                                                                                                 | Instruction<br>Hours | Credits | Exam I | CIA       | EXT |
| Core- V                                  | Quantum Mechanics-II                                                                                                                               | 5                    | 5       | 3      | 25        | 75  |
| Core- VI                                 | Condensed Matter Physics                                                                                                                           | 5                    | 5       | 3      | 25        | 75  |
| Core –VII                                | Numerical Methods and Programming in C++                                                                                                           | 5                    | 5       | 3      | 25        | 75  |
| Core Practical- III<br>(Industry Module) | Advanced Physics Experiments-I and<br>Microprocessor 8085 & Microcontroller<br>8051 Programming                                                    | 6                    | 4       | 6      | 50        | 50  |
| Elective- V<br>(Discipline Centric)      | <ul><li>Choose any one from</li><li>a) Spectroscopy</li><li>b) Crystal Growth and Thin Films</li><li>c) General Relativity and Cosmology</li></ul> | 5                    | 3       | 3      | 25        | 75  |
| *SEC-II<br>(Industry Oriented)           | Sewage and Waste Water Treatment and Reuse                                                                                                         | 4                    | 2       | 3      | 25        | 75  |
| (Industry Oriented)                      | Internship / Field Visit / Industrial Visit/<br>Research Knowledge Updating Activity                                                               | -                    | 2       |        | 50        | 50  |
|                                          |                                                                                                                                                    | 30                   | 26      |        |           |     |

#### THIRD SEMESTER

\*SEC: Skill Enhancement Course

#### FOURTH SEMESTER

| COURSE                           |                                                                                                                  | ion                  |         |          | MAX<br>MARKS |     |
|----------------------------------|------------------------------------------------------------------------------------------------------------------|----------------------|---------|----------|--------------|-----|
| COMPONENTS                       | NAME OF THE COURSE                                                                                               | Instruction<br>Hours | Credits | Exam Hrs | CIA          | EXT |
| Core- VIII                       | Nuclear and Particle Physics                                                                                     | 6                    | 5       | 3        | 25           | 75  |
| Core Practical- IV               | Advanced Physics Experiments - II and<br>Numerical Methods in C++                                                | 6                    | 4       | 3        | 50           | 50  |
| Elective- VI<br>(Generic)        | Choose any one from<br>a) Electro Magnetic Theory<br>b) Quantum Field Theory<br>c) Advanced Mathematical Physics | 6                    | 3       | 6        | 25           | 75  |
| *SEC- III<br>(Industry Oriented) | Solar Energy Utilization                                                                                         | 4                    | 2       | 3        | 25           | 75  |
| Core Project                     | Project with viva voce                                                                                           | 8                    | 8       |          | 50           | 50  |
|                                  | Extension Activity:<br>Choose any one from List - I                                                              | -                    | 1       |          | 50           | 50  |
|                                  |                                                                                                                  | 30                   | 23      |          |              |     |

\*SEC: Skill Enhancement Course

| Course Type                                                        | No. of<br>Courses | Credit<br>Distribution | Total<br>No. of<br>Credits |
|--------------------------------------------------------------------|-------------------|------------------------|----------------------------|
| Core Paper                                                         | 8                 | 5                      | 40                         |
| Core Practical                                                     | 4                 | 4                      | 16                         |
| Elective                                                           | 6                 | 3                      | 18                         |
| Project                                                            | 1                 | 8                      | 8                          |
| Skill Enhancement Course                                           | 3                 | 2                      | 6                          |
| Internship/Field Visit<br>/Research Knowledge<br>Updating Activity | 1                 | 2                      | 2                          |
| Extension Activity                                                 | 1                 | 1                      | 1                          |
| TOTAL                                                              | 24                |                        | 91                         |

# SUMMARY STRUCTURE OF THE PROGRAMME

# LIST - I - ACADEMIC EXTENSION ACTIVITY

#### 1. Entrepreneurship and Innovation Workshop Series

Empowering students to develop entrepreneurial skills and explore opportunities for commercializing physics-related technologies or starting their ventures.

#### 2. Computational Physics Hackathon

Organizing hackathons or coding competitions focused on solving physics problems using computational techniques, fostering collaboration and innovation among students

#### 3. Science Education Outreach Program

Involving students in educational outreach activities, such as designing and delivering physics workshops for schools or mentoring undergraduate students in projects.

#### 4. Physics in Your Pocket

An interactive workshop series exploring the physics concepts and experiments that can be conducted using sensors available in mobile phones, covering topics such as motion, sound, light & magnetism and monitoring air quality, temperature, humidity, and pollution levels in various locations (student residence)

#### 5. Conduct Virtual Experiments and Prepare Reports

a) Conduct the diffraction at a slit experiment virtually using the following link <a href="https://www.walter-fendt.de/html5/phen/singleslit\_en.htm">https://www.walter-fendt.de/html5/phen/singleslit\_en.htm</a>
i) Measure the angular spread (Θ) for different slit widths (Δx) for given wavelength of the incident photon. ii). Determine the momentum of the incident photon using, p=h/λ
iii) . Create a line of best fit through the points in the plot 1 Δpx against Δx and find its slope. How this exercise is related to Heisenberg Uncertainty principle Make a report of

the observations

b) Virtual lab - Photoelectric effect using Value@Amritha: link

 $\underline{https://vlab.amrita.edu/?sub=1\&brch=195\&sim=840\&cnt=195\&sim=840\&cnt=195\&sim=840\&cnt=195\&sim=840\&cnt=185\&sim=840\&cnt=185\&sim=840\&cnt=185\&sim=840\&cnt=185\&sim=840\&cnt=185\&sim=840\&cnt=185\&sim=840\&cnt=185\&sim=840\&cnt=185\&sim=840\&cnt=185\&sim=840\&cnt=185\&sim=840\&cnt=185\&sim=840\&cnt=185\&sim=840\&cnt=185\&sim=840\&cnt=185\&sim=840\&cnt=185\&sim=840\&cnt=185\&sim=840\&cnt=185\&sim=840\&cnt=185\&sim=840\&cnt=185\&sim=840\&cnt=185\&sim=840\&cnt=185\&sim=840\&cnt=185\&sim=840\&cnt=185\&sim=840\&cnt=185\&sim=840\&cnt=185\&sim=840\&cnt=185\&sim=840\&cnt=185\&sim=840\&cnt=185\&sim=840\&cnt=185\&sim=840\&cnt=185\&sim=840\&cnt=185\&sim=840\&cnt=185\&sim=840\&cnt=185\&sim=840\&cnt=185\&sim=840\&cnt=185\&sim=840\&cnt=185\&sim=840\&cnt=185\&sim=840\&cnt=185\&sim=840\&cnt=185\&sim=840\&cnt=185\&sim=840\&cnt=185\&sim=840\&cnt=185\&sim=840\&cnt=185\&sim=840\&cnt=185\&sim=840\&cnt=185\&sim=840\&cnt=185\&sim=840\&cnt=185\&sim=840\&cnt=185\&sim=840\&cnt=185\&sim=840\&cnt=185\&sim=840@cnt=185\&sim=840@cnt=185\&sim=840@cnt=185\&sim=840@cnt=185\&sim=840@cnt=185\&sim=840@cnt=185\&sim=840@cnt=185\&sim=840@cnt=185\&sim=185\&sim=185\&sim=840@cnt=185\&sim=840@cnt=185\&sim=840@cnt=185\&sim=840@cnt=185\&sim=840@cnt=185\&sim=840@cnt=185\&sim=840@cnt=185\&sim=840@cnt=185\&sim=840@cnt=185\&sim=840@cnt=185\&sim=840@cnt=185\&sim=840@cnt=185\&sim=840@cnt=185\&sim=840@cnt=185\&sim=840@cnt=185\&sim=840@cnt=185\&sim=840@cnt=185\&sim=840@cnt=185\&sim=840@cnt=185\&sim=840@cnt=185\&sim=840@cnt=185\&sim=185\&sim=185\&sim=185\&sim=185\&sim=185\&sim=185\&sim=185\&sim=185\&sim=185\&sim=185\&sim=185\&sim=185\&sim=185\&sim=185\&sim=185\&sim=185\&sim=185\&sim=185\&sim=185\&sim=185\&sim=185\&sim=185\&sim=185\&sim=185\&sim=185\&sim=185\&sim=185\&sim=185\&sim=185\&sim=185\&sim=185\&sim=185\&sim=185\&sim=185\&sim=185\&sim=185\&sim=185\&sim=185\&sim=185\&sim=185\&sim=185\&sim=185\&sim=185\&sim=185\&sim=185\&sim=185\&sim=185\&sim=185\&sim=185\&sim=185\&sim=185\&sim=185\&sim=185\&sim=185\&sim=185\&sim=185\&sim=185\&sim=185\&sim=185\&sim=185\&sim=185\&sim=185\&sim=185\&sim=185\&sim=185\%sim=185\%sim=185\%sim=185\%sim=185\%sim=185\%sim=185\%sim=185\%sim=185\%sim=185\%sim=185\%sim=185\%sim=185\%sim=185\%sim=185\%sim=185\%sim=185\%sim=185\%sim=185\%sim=185\%si$ 

i) Determine the minimum frequency required to have Photoelectric effect for an EM radiation, when incident on a zinc metal surface. ii) . Determine the target material if the threshold frequency of EM radiation is $5.5 \times 10^{15}$  Hz in a particular photoelectric experimental set up.

iii) Determine the maximum kinetic energy of photo-electrons emitted from a Zinc metal surface,

if the incident frequency is  $3x10^{15}$ Hz. Make a report of the calculations

 c) Visualization of wave packets using Physlet@Quantum Physics: <u>https://www.compadre.org/PQP/quantum-need/prob5\_11.cfm</u> Six different classical wave packets are shown in the animations. Which of the wave packets have a phase velocity that is: greater than / less than / equal to the group velocity? Make a report of the observations.

# 6. Construction of physics Models

# 7. Science Club Activities

(Report for the Extension activity shall be submitted by the students individually)

#### Field Visit/WORK

Fieldwork, as a derived concept, is the practical work carried out by students outside the classroom or laboratory in order to acquire hands-on experience, handle data, make observations, and interact with areas that are actual, involving the subject of their studies or professional practices. Practical field work includes having an interaction with nature, field sites, fancy tools, instruments, and local communities for discussion of the specific topics and studies to collect, investigate and analyze or for the utilization in disciplines of natural sciences, social sciences, humanities, engineering and other professional fields.

Following are some of the fieldwork activities a student or group of students may undertake.

(Not only restricted to the following activities)

**Atmospheric Physics Measurements:** Perform atmospheric physics measurements, such as temperature, humidity, and pressure, using weather stations or handheld instruments. Study atmospheric phenomena, weather patterns, and climate change indicators.

**Water Quality Analysis:** Collect water samples from lakes, rivers, or oceans to analyze water quality parameters, such as pH, salinity, and dissolved oxygen. Investigate water pollution sources, ecological impacts, and aquatic ecosystems.

**Wind Energy Measurements:** Conduct wind speed and direction measurements using anemometers and wind vanes at potential wind farm sites.

Study wind energy potential, turbine design, and wind farm optimization.

**Thermal Power Plant Tour and Operation Overview**: Organize a guided tour of a thermal power station to study the overall operation, energy generation processes, and power plant components, such as boilers, turbines, and generators. Learn about thermal power generation principles, steam cycles, and energy conversion efficiency.

**Nuclear Power Plant Tour:** Organize a guided tour of a nuclear power plant to study nuclear reactor design, operation, and safety measures.

Learn about nuclear fuel cycles, reactor control systems, and radiation monitoring.

**Observational Astronomy:** Organize a field trip to an observatory or a dark sky site for astronomical observations using telescopes. Study celestial objects, such as planets and stars.

**Solar Observations:** Conduct solar observations using solar telescopes or solar filters or collect data from solar observatories to study sunspots, solar flares, and solar prominences. Analyze solar activity and its impact on space weather.

**Space Observatory Field Trip:** Visit space observatories, astronomical research facilities, or satellite ground stations to study space exploration missions, astronomical observations, and satellite communications. Explore telescope technologies, observational techniques, and data acquisition systems.

**Rocket Launch and Space Mission Observation:** Attend rocket launch events, space mission launches, or spacecraft test flights to observe space launch operations, rocket propulsion systems, and aerospace technologies. Explore launch vehicle designs, mission profiles, and space exploration advancements.

**Geomagnetic Field Measurements:** Conduct geomagnetic field measurements using magnetometers at different locations to study Earth's magnetic field variations. Investigate geomagnetic storms, magnetic anomalies, and their effects on Earth's environment.

**Data Science and Machine Learning Workshop:** Attend workshops or training sessions on data science, machine learning, and artificial intelligence applications in physics research. Explore data analytics, pattern recognition, and predictive modeling techniques.

(Report for the Internship/ Field visit/ Industrial Visit/ Research Knowledge Updating Activity shall be submitted by the students individually)

# **PROJECT WORK**

| <b>Rules and Regulations for PG Physics Project</b>                 |
|---------------------------------------------------------------------|
| Each candidate must undertake an individual project. Group projects |

| Individual             | Each candidate must undertake an individual project. Group projects are not                                                                                                                                                                                              |
|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Project                | permitted                                                                                                                                                                                                                                                                |
| Project Types          | <ul> <li>Projects must be based on one or more of the following areas:</li> <li>Theoretical Physics</li> <li>Experimental Physics</li> <li>Computational Physics</li> <li>Scientific Data Analysis</li> </ul>                                                            |
| Prohibited<br>Projects | <ul> <li>Readymade projects are not recommended</li> <li>Electronic construction projects, IOT projects are not allowed unless they are the original idea of the student and approved by the project supervisor.</li> </ul>                                              |
| Project Report         | <ul> <li>Students must adhere to the template provided for the preparation of their project reports.</li> <li>The report should include an abstract, introduction, literature review, methodology, results, discussion, conclusion, and references.</li> </ul>           |
| Originality and        | • Projects must be original work by the student.                                                                                                                                                                                                                         |
| Plagiarism             | • Plagiarism in any form is strictly prohibited and will result in disqualification.                                                                                                                                                                                     |
| Supervision            | <ul> <li>Each project must be supervised by a faculty member.</li> <li>Regular updates and consultations with the supervisor are mandatory</li> </ul>                                                                                                                    |
| Safety and<br>Ethics   | <ul> <li>Students conducting experimental projects must follow all laboratory safety protocols.</li> <li>Ethical guidelines in research must be strictly followed</li> </ul>                                                                                             |
| Evaluation             | <ul> <li>Projects will be evaluated by the external examiners based on originality, methodology, analysis, and adherence to the provided template.</li> <li>Both a written report and an oral presentation may be required as part of the evaluation process.</li> </ul> |
|                        | ncouraged to consult their supervisors and the department for any clarifications e rules and regulations                                                                                                                                                                 |
|                        | Internal : 50 Marks and External : 50 Marks                                                                                                                                                                                                                              |

#### FORMAT FOR PREPARATION OF PROJECT REPORT

Students are required to submit a Project report at the end of Semester - IV and also required to make presentation of the project work during Viva- voce Examination. Each student should submit **TWO** copies of the project report with a minimum of 50 pages not exceeding 75 pages to the Department on or before the date notified for the same.

The sequence in which the project report should be arranged and bound should be as follows

| 1  | Cover Page and Title Page                                        |
|----|------------------------------------------------------------------|
| 2  | Certificate                                                      |
| 3  | Declaration                                                      |
| 4  | Acknowledgement (not exceeding one page)                         |
| 5  | Abstract                                                         |
| 6  | Contents                                                         |
| 7  | List of Figures / Exhibits / Charts/ Circuit Diagrams            |
| 8  | List of tables                                                   |
| 9  | Symbols and notations                                            |
| 10 | Chapters                                                         |
| 11 | Result and Discussion                                            |
| 12 | Conclusion                                                       |
| 13 | References                                                       |
| 14 | Xerox Copies of Publications/Certificates of Seminar, Conference |
|    | Participation if any                                             |

Running matter - Times New Roman, Font size 12, with 1.5 line spacing

| CORE I: MATHEMATICAL PHYSICS | I YEAR - FIRST SEMESTER |
|------------------------------|-------------------------|
|                              |                         |

| Subject<br>Code | Subject Name         |      | L | Т | Р | Credit | Instruction<br>hours | Marks |
|-----------------|----------------------|------|---|---|---|--------|----------------------|-------|
|                 | MATHEMATICAL PHYSICS | Core |   |   |   | 5      | 7                    | 75    |

| Pre-Requisites                                                                                                                                 |  |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Matrices, Vectors, Basics of Differentiation, Integration and Differential equations                                                           |  |  |  |  |  |
| Learning Objectives                                                                                                                            |  |  |  |  |  |
| To equip students with the mathematical techniques needed for understanding theoretical treatment in different courses taught in their program |  |  |  |  |  |
| > To extend their manipulative skills to apply mathematical techniques in their fields                                                         |  |  |  |  |  |

To help students apply Mathematics in solving problems of Physics

| UNITS                                               | Course Details                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| UNIT I:<br>LINEAR<br>VECTOR SPACE                   | Basic concepts – Definitions- examples of vector space – Linear<br>independence Scalar product- Orthogonality – Gram-Schmidt<br>orthogonalization procedure – linear operators – Dual space- Ket and Bra<br>notation – orthogonal basis – change of basis – Isomorphism of vector space<br>– projection operator – orthogonal transformations and rotation for R <sup>2</sup> Vector<br>space with standard basis.                                                                                                                                                                                                   |
| UNIT II:<br>COMPLEX<br>ANALYSIS and<br>GROUP THEORY | Review of Complex Numbers -de Moivre's Theorem-Functions of a Complex Variable- Differentiability -Analytic functions- Harmonic Functions- Complex Integration- Contour Integration, Cauchy – Riemann conditions – Singular points – Cauchy's Integral Theorem and integral Formula -Taylor's Series Laurent's Expansion- Zeros and poles – Residue theorem. Concept of groups-Abelian group-cyclic group- subgroups- classes- conjugate subgroups- Isomorphism and homomorphism – reducible and irreducible representations- character tables- construction of character tables for $C_2V$ and $C_3V$ point groups. |
| UNIT III:<br>MATRICES                               | Types of Matrices and their properties, Rank of a Matrix -Conjugate of a<br>matrix - Adjoint of a matrix - Inverse of a matrix - Hermitian and Unitary<br>Matrices Trace of a matrix- Transformation of matrices - Characteristic<br>equation - Eigen values and Eigen vectors - Cayley–Hamilton theorem –<br>Diagonalization                                                                                                                                                                                                                                                                                        |

| UNIT IV:<br>FOURIER<br>TRANSFORMS<br>&<br>LAPLACE<br>TRANSFORMS | Definitions -Fourier series and transform and its inverse – Properties of FT -<br>Fourier transform of derivatives - Cosine and sine transforms – Properties of<br>FT – Simple Applications. Laplace transform and its inverse - Transforms of<br>derivatives and integrals – Differentiation and integration of transforms –<br>Properties of LT- Simple applications.                 |
|-----------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| UNIT V:<br>DIFFERENTIAL<br>EQUATIONS                            | Second order differential equation- Sturm-Liouville's theory - Series<br>solution with simple examples - Hermite polynomials - Generating function<br>Orthogonality properties - Recurrence relations – Legendre polynomials<br>Generating function - Rodrigue formula – Orthogonality properties - Dirac<br>delta function - One dimensional Green's function and Reciprocity theorem. |

|             | 1. George Arfken and Hans J Weber, 2012, Mathematical Methods for                |
|-------------|----------------------------------------------------------------------------------|
|             | Physicists – A Comprehensive Guide (7th edition), Academic press.                |
|             | 2. P.K. Chattopadhyay, 2013, Mathematical Physics (2 <sup>nd</sup> edition), New |
|             | Age, New Delhi                                                                   |
|             | 3. A W Joshi, 2017, Matrices and Tensors in Physics, 4th Edition                 |
| TEXT BOOKS  | (Paperback), New Age International Pvt. Ltd., India                              |
|             | 4. B. D. Gupta, 2009, Mathematical Physics (4th edition), Vikas Publishing       |
|             | House, New Delhi.                                                                |
|             | 5. H. K. Dass and Dr. Rama Verma, 2014, Mathematical Physics, Seventh            |
|             | Revised Edition, S. Chand & Company Pvt. Ltd., New Delhi.                        |
|             | 1. E. Kreyszig, 1983, Advanced Engineering Mathematics, Wiley Eastern,           |
|             | New Delhi,                                                                       |
|             | 2. D. G. Zill and M. R. Cullen, 2006, Advanced Engineering Mathematics,          |
|             | 3rd Ed. Narosa, New Delhi.                                                       |
|             | 3. S. Lipschutz, 1987, Linear Algebra, Schaum's Series, McGraw - Hill,           |
| REFERENCE   | New York 3. E. Butkov, 1968, Mathematical Physics Addison Wesley,                |
| BOOKS       | Reading, Massachusetts.                                                          |
|             | 4. P. R. Halmos, 1965, Finite Dimensional Vector Spaces, 2nd Edition,            |
|             | Affiliated East West, New Delhi.                                                 |
|             | 5. C. R. Wylie and L. C. Barrett, 1995, Advanced Engineering                     |
|             | Mathematics, 6 th Edition, International Edition, McGraw-Hill, New               |
|             | York                                                                             |
|             | 1. www.khanacademy.org                                                           |
|             | 2. https://youtu.be/LZnRIOA1_2I                                                  |
|             | 3. http://hyperphysics.phy-astr.gsu.edu/hbase/hmat.html#hmath                    |
| WEB SOURCES | 4. https://www.youtube.com/watch?v=_2jymuM7OUU&list=PLhkiT_R                     |
|             | YTEU27vS_SIED56gNjVJGO2qaZ                                                       |
|             | 5. https://archive.nptel.ac.in/courses/115/106/115106086/                        |
|             |                                                                                  |

#### At the end of the course the student will be able to:

| CO1 | Understand use of bra-ket vector notation and explain the meaning of complete orthonormal set of basis vectors, and transformations and be able to apply them                                                                 | K1,<br>K2 |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| CO2 | Able to understand analytic functions, do complex integration, by applying<br>Cauchy Integral Formula. Able to compute many real integrals and infinite<br>sums via complex integration.                                      | K2,<br>K3 |
| CO3 | Analyze characteristics of matrices and its different types, and the process of diagonalization.                                                                                                                              | K4        |
| CO4 | Solve equations using Laplace transform and analyze the Fourier transformations of different function, grasp how these transformations can speed up analysis and correlate their importance in technology                     | K4,<br>K5 |
| CO5 | To find the solutions for physical problems using linear differential equations<br>and to solve boundary value problems using Green's function. Apply special<br>functions in computation of solutions to real world problems | K2,<br>K5 |
| K   | 1 - Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 – Evalua                                                                                                                                                          | te        |

#### MAPPING WITH PROGRAM OUTCOMES:

|     | PO1 | PO2 | PO3 | PO4 | PO5 | <b>PO6</b> | <b>PO7</b> | <b>PO8</b> | PO9 | <b>PO10</b> |
|-----|-----|-----|-----|-----|-----|------------|------------|------------|-----|-------------|
| CO1 | 3   | 3   | 3   | 3   | 3   | 3          | 3          | 2          | 3   | 2           |
| CO2 | 2   | 3   | 3   | 3   | 3   | 3          | 3          | 2          | 2   | 2           |
| CO3 | 3   | 3   | 3   | 2   | 2   | 3          | 3          | 2          | 3   | 2           |
| CO4 | 3   | 3   | 3   | 3   | 2   | 3          | 3          | 2          | 2   | 2           |
| CO5 | 3   | 2   | 3   | 3   | 2   | 3          | 3          | 2          | 2   | 3           |

|     | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 | PSO6 | PSO7 | PSO8 | PSO9 | PSO10 |
|-----|------|------|------|------|------|------|------|------|------|-------|
| CO1 | 3    | 3    | 3    | 3    | 3    | 3    | 3    | 2    | 3    | 2     |
| CO2 | 2    | 3    | 3    | 3    | 3    | 3    | 3    | 2    | 2    | 2     |
| CO3 | 3    | 3    | 3    | 2    | 2    | 3    | 3    | 2    | 3    | 2     |
| CO4 | 3    | 3    | 3    | 3    | 2    | 3    | 3    | 2    | 2    | 2     |
| CO5 | 3    | 2    | 3    | 3    | 2    | 3    | 3    | 2    | 2    | 3     |

#### CORE II: CLASSICAL MECHANICS AND I YEAR – FIRST SEMESTER RELATIVITY

| Subject<br>Code | Subject Name                          |      | L | Т | Р | Credit | Instruction<br>hours | Marks |
|-----------------|---------------------------------------|------|---|---|---|--------|----------------------|-------|
|                 | CLASSICAL MECHANICS AND<br>RELATIVITY | Core |   |   |   | 5      | 6                    | 75    |

#### **Pre-Requisites**

Fundamentals of mechanics, Foundation in mathematical methods.

#### **Learning Objectives**

- To understand fundamentals of classical mechanics.
- $\succ$ To understand Lagrangian formulation of mechanics and apply it to solve equation of motion.
- AAA To understand Hamiltonian formulation of mechanics and apply it to solve equation of motion.
- To discuss the theory of small oscillations of a system.
- To learn the relativistic formulation of mechanics of a system

| UNITS                                              | Course Details                                                                                                                                                                                                                                                                                                                 |
|----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| UNIT I:<br>PRINCIPLES OF<br>CLASSICAL<br>MECHANICS | Mechanics of a single particle – conservation laws for a particle –<br>mechanics of a system of particles – conservation laws for a system of<br>particles – constraints – holonomic & non-holonomic constraints –<br>generalized coordinates – configuration space – transformation<br>equations – principle of virtual work. |
| UNIT II:<br>LAGRANGIAN<br>FORMULATION              | D'Alembert's principle – Lagrangian equations of motion for<br>conservative systems – applications: (i) simple pendulum (ii)<br>Atwood's machine – Lagrange's equations in presence of non-<br>conservative forces – Lagrangian for a charged particle moving in an<br>electromagnetic field.                                  |
| UNIT III:<br>HAMILTONIAN<br>FORMULATION            | Phase space – generalized momentum and cyclic coordinates –<br>Hamiltonian function and conservation of energy – Hamilton's<br>canonical equations of motion – applications: (i) one dimensional<br>simple harmonic oscillator (ii) motion of particle in a central force<br>field.                                            |
| UNIT IV:<br>SMALL<br>OSCILLATIONS                  | Stable and unstable equilibrium –Formulation of the problem:<br>Lagrange's equations of motion for small oscillations – Properties of<br>T, V and w –Normal co-ordinates and normal frequencies of vibration<br>– free vibrations of a linear triatomic molecule.                                                              |

| UNIT V:<br>RELATIVITY  | Inertial and non-inertial frames – Lorentz transformation equations –<br>length contraction and time dilation – relativistic addition of velocities<br>– Einstein's mass-energy relation – Minkowski's space – four vectors<br>– position, velocity, momentum, acceleration and force in four vector<br>notation and their transformations.                                                                                                                                                  |  |  |  |  |  |
|------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| TEXT BOOKS             | <ol> <li>H. Goldstein, <i>Classical Mechanics</i>, 3rd Edition, Pearson Edu.<br/>2002.</li> <li>J. C. Upadhyaya, <i>Classical Mechanics</i>, Himalaya Publshing Co.<br/>New Delhi.</li> <li>S.L. Gupta,V.Kumar, H.V. Sharma, Classical Mechanics,<br/>PrakatiPrakashan, Meerut.</li> <li>R. Resnick, <i>Introduction to Special Theory of Relativity</i>, Wiley<br/>Eastern, New Delhi, 1968.</li> <li>N. C. Rana and P.S. Joag, Classical Mechanics - Tata McGraw<br/>Hill, 2001</li> </ol> |  |  |  |  |  |
| <b>REFERENCE BOOKS</b> | <ol> <li>R. G. Takwala and P.S. Puranik, Introduction to Classical<br/>Mechanics –Tata – McGraw Hill, New Delhi, 1980.</li> <li>K. R. Symon, 1971, <i>Mechanics</i>, Addison Wesley, London.</li> <li>S. N. Biswas, 1999, <i>Classical Mechanics</i>, Books &amp; Allied,<br/>Kolkata.</li> <li>T.W.B. Kibble, <i>Classical Mechanics</i>, ELBS.</li> <li>Greenwood, <i>Classical Dynamics</i>, PHI, New Delhi.</li> </ol>                                                                   |  |  |  |  |  |
| WEB SOURCES            | <ol> <li>http://poincare.matf.bg.ac.rs/~zarkom/Book_Mechanics_Goldst<br/>ein_Classical_Mechanics_optimized.pdf</li> <li>https://pdfcoffee.com/classical-mechanics-j-c-upadhyay-<br/>2014editionpdf-pdf-free.html</li> <li>https://nptel.ac.in/courses/122/106/122106027/</li> <li>https://ocw.mit.edu/courses/physics/8-09-classical-mechanicsiii-<br/>fall-2014/lecture-notes/</li> <li>https://www.britannica.com/science/relativistic-mechanics</li> </ol>                                |  |  |  |  |  |

#### At the end of the course the student will be able to:

| CO1    | Understand the fundamentals of classical mechanics.                                                 | K2        |
|--------|-----------------------------------------------------------------------------------------------------|-----------|
| CO2    | Apply the principles of Lagrangianmechanics to solve the equations of motion of physical systems.   | К3        |
| CO3    | Apply the principles of Hamiltonian mechanics to solve the equations of motion of physical systems. | K3,<br>K5 |
| CO4    | Analyze the small oscillations in systems and determine their normal modes of oscillations.         | K4,<br>K5 |
| CO5    | Understand and apply the principles of relativistic kinematics to the mechanical systems.           | K2,<br>K3 |
| K1 - F | Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 – Evaluate                                  | e         |

#### MAPPING WITH PROGRAM OUTCOMES:

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | <b>PO7</b> | PO8 | PO9 | PO10 |
|-----|-----|-----|-----|-----|-----|-----|------------|-----|-----|------|
| CO1 | 2   | 3   | 3   | 3   | 2   | 2   | 2          | 3   | 2   | 2    |
| CO2 | 2   | 3   | 3   | 3   | 2   | 2   | 2          | 3   | 2   | 2    |
| CO3 | 2   | 3   | 3   | 3   | 2   | 2   | 2          | 3   | 2   | 2    |
| CO4 | 2   | 3   | 3   | 3   | 2   | 2   | 2          | 3   | 2   | 2    |
| CO5 | 2   | 3   | 3   | 3   | 2   | 2   | 2          | 3   | 2   | 2    |

|     | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 | PSO6 | PSO7 | PSO8 | PSO9 | PSO10 |
|-----|------|------|------|------|------|------|------|------|------|-------|
| CO1 | 3    | 3    | 3    | 3    | 3    | 3    | 3    | 2    | 3    | 2     |
| CO2 | 2    | 3    | 3    | 3    | 3    | 3    | 3    | 2    | 2    | 2     |
| CO3 | 3    | 3    | 3    | 2    | 2    | 3    | 3    | 2    | 3    | 2     |
| CO4 | 3    | 3    | 3    | 3    | 2    | 3    | 3    | 2    | 2    | 2     |
| CO5 | 3    | 2    | 3    | 3    | 2    | 3    | 3    | 2    | 2    | 2     |

#### CORE PRACTICAL I: GENERAL PHYSICS AND ELECTRONICS EXPERIMENTS – I

| Subject<br>Code | Subject Name                                                    | Category | L | Т | Р | Credit | Instruction<br>hours | Marks |
|-----------------|-----------------------------------------------------------------|----------|---|---|---|--------|----------------------|-------|
|                 | Practical-I: General Physics and<br>Electronics Experiments – I | Core     |   |   |   | 4      | 6                    | 50    |

 Pre-Requisites

 Knowledge and hands on experience of basic general and electronics experiments of Physics

 Learning Objectives

- To understand the concept of mechanical behavior of materials and calculation of same using appropriate equations.
- Application of Diffraction and Interference
- Determination of some physical constants
- > To calculate the thermodynamic quantities and physical properties of materials.
- > To analyze the optical and electrical properties of materials.

# **Course Details**

# (Choose any SIX experiments from Part A and SIX from Part B) PART A- General Physics Experiments

- 1. Determination of Young's modulus and Poisson's ratio by Hyperbolic fringes Cornu's Method
- 2. Determination of Thickness of the enamel coating on a wire by diffraction
- 3. Measurement of Band gap energy of the Thermistor material
- 4. Determination of Planck Constant LED Method
- 5. Determination of Compressibility of a liquid using Ultrasonic Interferometer
- 6. Determination of Wavelength, Separation of wavelengths using Michelson Interferometer
- 7. Accurate measurement of wavelength of Diode Laser using Diffraction grating.
- 8. Determination of Diffraction pattern of light with circular aperture using Diode/He-Ne laser.
- 9. Measurement of Susceptibility of liquid Quincke's method
- 10. Determination of Self Inductance of the given coil using Maxwell's method.
- 11. Determination of Crystallographic Parameters for the given XRD spectrum
  - a) Unit cell determination b) W-H plot and interpretation
- 12. Measurement of RC Time constant (through discharging) and its theoretical verification.

## **PART B – Electronics Experiments**

- 1. Construction of series voltage regulator and its characteristics
- 2. FET CS amplifier- Frequency response, input impedance, output impedance
- 3. Important electrical characteristics of IC 741 (i/p and o/p impedance, Voltage Gain, CMRR).
- 4. Construction of a Constant current source using Transistor/FET and 741 and I-R characteristics (Floating and Grounded Load)
- 5. V- I and optical Characteristics of LEDs of different wavelengths.
- 6. Study of attenuation characteristics of Wien's bridge network and design of Wien's bridge oscillator using Op-Amp.
- 7. Study of attenuation characteristics of Phase shift network and design of Phase shift oscillator using Op-Amp.
- 8. To design and construct a Schmitt trigger using IC741
- 9. Construction of square wave and Triangular wave generator using IC 741
- 10. Construction of pulse generator using the IC 741 application as frequency divider
- 11. Construction of Op-Amp- 4-bit Digital to Analog converter (Binary Weighted and R/2R ladder type
- 12. BCD addition using IC7483

|                        | 1. Practical Physics, Gupta and Kumar, PragatiPrakasan.             |  |  |  |  |  |  |
|------------------------|---------------------------------------------------------------------|--|--|--|--|--|--|
|                        | 2. Kit Developed for doing experiments in Physics- Instruction      |  |  |  |  |  |  |
|                        | manual, R.Srinivasan K.R Priolkar, Indian Academy of                |  |  |  |  |  |  |
|                        | Sciences.                                                           |  |  |  |  |  |  |
|                        | 3. Electronic Laboratory Primer a design approach,                  |  |  |  |  |  |  |
| TEXT BOOKS             | S. Poornachandra, B.Sasikala, Wheeler Publishing, New Delhi.        |  |  |  |  |  |  |
|                        |                                                                     |  |  |  |  |  |  |
|                        | 4. Electronic lab manual Vol I, K ANavas, Rajath Publishing.        |  |  |  |  |  |  |
|                        | 5. Electronic lab manual Vol II, K ANavas, PHI eastern Economy      |  |  |  |  |  |  |
|                        | Edition                                                             |  |  |  |  |  |  |
|                        | Duition                                                             |  |  |  |  |  |  |
|                        | 1. Advanced Practical Physics, S.P Singh, PragatiPrakasan.          |  |  |  |  |  |  |
|                        | 2. An advanced course in Practical Physics, D.Chattopadhayay, C.R   |  |  |  |  |  |  |
|                        | Rakshit, New Central Book Agency Pvt. Ltd                           |  |  |  |  |  |  |
|                        | 3. Op-Amp and linear integrated circuit, Ramakanth A Gaykwad,       |  |  |  |  |  |  |
| <b>REFERENCE BOOKS</b> | Eastern Economy Edition.                                            |  |  |  |  |  |  |
|                        | 4. A course on experiment with He-Ne Laser, R.S. Sirohi, John Wiley |  |  |  |  |  |  |
|                        | & Sons (Asia) Pvt. Ltd.                                             |  |  |  |  |  |  |
|                        | 5. Electronic lab manual Vol II, Kuriachan T.D, Syam Mohan,         |  |  |  |  |  |  |
|                        | -                                                                   |  |  |  |  |  |  |
|                        | Ayodhya Publishing.                                                 |  |  |  |  |  |  |

| CO1        | Understand the strength of material using Young's modulus.                         | K2     |
|------------|------------------------------------------------------------------------------------|--------|
| CO2        | Acquire knowledge of thermal behavior of the materials.                            | K1     |
| CO3        | Understand theoretical principles of magnetism through the experiments.            | K2     |
| <b>CO4</b> | Acquire knowledge about arc spectrum and applications of laser                     | K1, K3 |
| CO5        | Improve the analytical and observation ability in Physics Experiments              | K3, K5 |
| CO6        | Conduct experiments on characteristics of FET Amplifier                            | K4     |
| <b>CO7</b> | Analyze various parameters related to operational amplifiers.                      | K4     |
| CO8        | Understand the concepts involved in arithmetic and logical circuits using IC's     | K2     |
| CO9        | Acquire knowledge about Combinational Logic Circuits and Sequential Logic Circuits | K1     |
| CO10       | Analyze the applications of counters and registers                                 | K4     |

# At the end of the course the student will be able to:

#### MAPPING WITH PROGRAM OUTCOMES:

|      | <b>PO1</b> | PO2 | PO3 | PO4 | PO5 | PO6 | <b>PO7</b> | <b>PO8</b> | PO9 | PO10 |
|------|------------|-----|-----|-----|-----|-----|------------|------------|-----|------|
| CO1  | 2          | 2   | 2   | 3   | 2   | 2   | 2          | 1          | 2   | 3    |
| CO2  | 2          | 2   | 3   | 3   | 3   | 3   | 3          | 3          | 3   | 3    |
| CO3  | 3          | 3   | 3   | 3   | 3   | 3   | 3          | 3          | 3   | 3    |
| CO4  | 3          | 2   | 3   | 3   | 3   | 3   | 3          | 3          | 3   | 3    |
| CO5  | 3          | 3   | 3   | 3   | 3   | 3   | 2          | 2          | 2   | 2    |
| CO6  | 2          | 2   | 2   | 3   | 3   | 1   | 1          | 1          | 3   | 3    |
| CO7  | 2          | 2   | 3   | 3   | 3   | 1   | 1          | 1          | 3   | 3    |
| CO8  | 3          | 3   | 3   | 3   | 3   | 3   | 2          | 2          | 3   | 3    |
| CO9  | 3          | 3   | 3   | 3   | 3   | 3   | 1          | 1          | 1   | 1    |
| CO10 | 3          | 3   | 3   | 3   | 3   | 3   | 1          | 1          | 1   | 1    |

|            | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 | PSO6 | PSO7 | PSO8 | PSO9 | PSO1 |
|------------|------|------|------|------|------|------|------|------|------|------|
|            |      |      |      |      |      |      |      |      |      | 0    |
| CO1        | 2    | 2    | 2    | 3    | 2    | 2    | 2    | 1    | 2    | 3    |
| CO2        | 2    | 2    | 3    | 3    | 3    | 3    | 3    | 3    | 3    | 3    |
| CO3        | 3    | 3    | 3    | 3    | 3    | 3    | 3    | 3    | 3    | 3    |
| CO4        | 3    | 2    | 3    | 3    | 3    | 3    | 3    | 3    | 3    | 3    |
| CO5        | 3    | 3    | 3    | 3    | 3    | 3    | 2    | 2    | 2    | 2    |
| CO6        | 2    | 2    | 2    | 3    | 3    | 1    | 1    | 1    | 3    | 3    |
| <b>CO7</b> | 2    | 2    | 3    | 3    | 3    | 1    | 1    | 1    | 3    | 3    |
| <b>CO8</b> | 3    | 3    | 3    | 3    | 3    | 3    | 2    | 2    | 3    | 3    |
| CO9        | 3    | 3    | 3    | 3    | 3    | 3    | 1    | 1    | 1    | 1    |
| CO10       | 3    | 3    | 3    | 3    | 3    | 3    | 1    | 1    | 1    | 1    |

# **METHOD OF EVALUATION:**

| Continuous Internal<br>Assessment | End Semester<br>Examination | Total |
|-----------------------------------|-----------------------------|-------|
| 50                                | 50                          | 100   |

### **CORE- III : STATISTICAL MECHANICS**

#### I YEAR - II SEMESTER

| Subject<br>Code | Subject Name          | Category | L | Т | Р | Credits | Inst. Hours | Marks |
|-----------------|-----------------------|----------|---|---|---|---------|-------------|-------|
|                 | STATISTICAL MECHANICS | Core     |   |   |   | 5       | 6           | 75    |

#### **Pre-Requisites**

Laws of thermodynamics, phase transition, entropy, ensembles, partition function, classical and Quantum statistics, thermal equilibrium, Brownian motion

#### Learning Objectives

- To acquire the knowledge of thermodynamic potentials and to understand phase transition in thermodynamics
- > To identify the relationship between statistics and thermodynamic quantities
- > To comprehend the concept of partition function, canonical and grand canonical ensembles
- To grasp the fundamental knowledge about the three types of statistics
- To get in depth knowledge about phase transitions and fluctuation of thermodynamic properties that vary with time

| UNITS                                                                  | Course Details                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| UNIT I:                                                                | Thermodynamic potentials and the reciprocity relations -<br>Thermodynamic Equilibrium - Gibb's phase rule - Third law of<br>Thermodynamics. Phase transitions of first and second kind. Critical                                                                                                                                                                                                                                                                                                  |
| THERMODY<br>NAMICS<br>AND PHASE<br>TRANSITIONS                         | Thermodynamics - Phase transitions of first and second kind – Critical<br>exponent - Phase Transitions of the second kind: The Ising model –<br>Bragg-Williams approximation - One dimensional Ising model.                                                                                                                                                                                                                                                                                       |
| UNIT II:<br>STATISTICAL<br>MECHANICS                                   | Introduction to statistical mechanics - Phase space – Ensembles and<br>their types – Liouville's theorem – Postulate of equal priori probability<br>– Microstates and macrostates – Stirling's formula – The most probable<br>distribution – Law of equipartition of energy - Entropy and probability<br>– Probability distribution and entropy of a two level system - Negative<br>temperature.                                                                                                  |
| UNIT III:<br>MICRO<br>CANONICAL<br>AND GRAND<br>CANONICAL<br>ENSEMBLES | Microcanonical ensemble (Isolated system) – Perfect gas in<br>Microcanonical ensemble – Gibbs paradox – Partition function and its<br>correlation with thermodynamic quantities - Grand canonical ensemble<br>(system with an infinite number of particles) – Partition function and<br>thermodynamic functions for Grand canonical ensemble – Perfect gas<br>in Grand canonical ensemble – Applications: Mean kinetic energy of a<br>molecule in a gas, Brownian motion and Harmonic oscillator. |

| UNIT IV:      | Density matrix - Density matrix in micro canonical, canonical and grand   |
|---------------|---------------------------------------------------------------------------|
| CLASSICAL     | canonical ensembles - Bose-Einstein statistics - Maxwell-Boltzmann        |
| AND QUANTUM   | statistics - Fermi-Dirac statistics - Black-body radiation and the -Plank |
| STATISTICS    | radiation law - Bose-Einstein gas - Bose-Einstein condensation - Fermi-   |
|               | Dirac gas.                                                                |
| UNIT V:       | Production of Low Temperature – Measurement of Low temperature –          |
| LOW           | Approach to absolute zero by adiabatic demagnetization : Principle,       |
| TEMPERATURE,  | Method, Theory and T-S diagram – Conversion of magnetic                   |
| ISINGMODELAND | temperature to Kelvin temperature - Fluctuations and transport            |
| FLUCTUATIONS  | phenomena – Brownian movement –Motion due to fluctuating force:           |
|               | The Fokker - Planck equation – Fluctuation in energy and pressure         |

| 1. Dr. S. L. Gupta and Dr. V. Kumar, 2008, <i>ElementaryStatistical</i>        |
|--------------------------------------------------------------------------------|
| 1                                                                              |
| Mechanics, 22 <sup>nd</sup> Edition, PragatiPrakashan, Meerut.                 |
| 2. S. K. Sinha, 1990, Statistical Mechanics, Tata McGraw Hill,                 |
| New Delhi. 3. B. K. Agarwal and M. Eisner, 1998, <i>Statistical</i>            |
| Mechanics, Second Edition New Age International, New Delhi.                    |
| 4. J. K. Bhattacharjee, 1996, Statistical Mechanics: An                        |
| Introductory Text, Allied Publication, New Delhi.                              |
| 5. F. Reif, 1965, Fundamentals of Statistical and Thermal Physics,             |
| McGraw -Hill, New York.                                                        |
| 6. M. K. Zemansky, 1968, Heat and Thermodynamics, 5 <sup>th</sup> edition,     |
| McGrawHill New York.                                                           |
| 1. R. K. Pathria, 1996, Statistical Mechanics, 2 <sup>nd</sup> edition, Butter |
| WorthHeinemann, New Delhi.                                                     |
| 2. L. D. Landau and E. M. Lifshitz, 1969, Statistical Physics, Pergamon        |
| Press, Oxford.                                                                 |
| 3. K. Huang, 2002, Statistical Mechanics, Taylor and Francis, London           |
| 4. W. Greiner, L. NeiseandH.Stoecker, <i>Thermodynamics and Statistical</i>    |
| Mechanics, Springer Verlang, New York.                                         |
| 5. A. B. Gupta, H. Roy, 2002, <i>Thermal Physics</i> , Books and Allied,       |
| Kolkata.                                                                       |
| 1. https://byjus.com/chemistry/third-law-of-thermodynamics/                    |
| 2. https://web.stanford.edu/~peastman/statmech/thermodynamics.h                |
| tml                                                                            |
| 3. https://en.wikiversity.org/wiki/Statistical_mechanics_and_therm             |
| odynami cs                                                                     |
| 4. https://en.wikipedia.org/wiki/Grand_canonical_ensemble                      |
| 5. https://en.wikipedia.org/wiki/Ising_model                                   |
|                                                                                |

#### At the end of the course the student will be able to:

| CO1    | To examine and elaborate the effect of changes in thermodynamic quantities<br>on the states of matter during phase transition                                                                                                                                                                                                                                  | K5        |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| CO2    | To analyze the macroscopic properties such as pressure, volume, temperature,<br>specific heat, elastic moduli etc. using microscopic properties like<br>intermolecular forces, chemical bonding, atomicity etc.<br>Describe the peculiar behavior of the entropy by mixing two gases<br>Justify the connection between statistics and thermodynamic quantities | K4        |
| CO3    | Differentiate between canonical and grand canonical ensembles and to<br>interpret the relation between thermodynamical quantities and partition<br>function                                                                                                                                                                                                    | K1        |
| CO4    | To recall and apply the different statistical concepts to analyze the behavior<br>of ideal Fermi gas and ideal Bose gas and also to compare and distinguish<br>between the three types of statistics.                                                                                                                                                          | K4,<br>K5 |
| CO5    | To discuss and examine the thermodynamical behavior of gases under fluctuation and also using Ising model                                                                                                                                                                                                                                                      | K3        |
| K1 - R | emember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 – Evaluate                                                                                                                                                                                                                                                                                              |           |

# MAPPING WITH PROGRAM OUTCOMES:

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | <b>PO7</b> | PO8 | PO9 | PO10 |
|-----|-----|-----|-----|-----|-----|-----|------------|-----|-----|------|
| CO1 | 3   | 3   | 3   | 1   | 1   | 2   | 3          | 1   | 1   | 3    |
| CO2 | 3   | 3   | 3   | 1   | 1   | 2   | 3          | 1   | 1   | 3    |
| CO3 | 3   | 3   | 3   | 1   | 1   | 2   | 3          | 2   | 1   | 3    |
| CO4 | 3   | 3   | 3   | 1   | 1   | 2   | 3          | 2   | 1   | 3    |
| CO5 | 3   | 3   | 3   | 1   | 1   | 2   | 3          | 1   | 1   | 3    |

|            | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 | PSO6 | PSO7 | PSO8 | PSO9 | PSO10 |
|------------|------|------|------|------|------|------|------|------|------|-------|
|            | -    | -    | -    |      |      | -    | -    |      |      |       |
| CO1        | 3    | 3    | 3    | 1    | 1    | 2    | 3    | 1    | 1    | 3     |
| CO2        | 3    | 3    | 3    | 1    | 1    | 2    | 3    | 1    | 1    | 3     |
| CO3        | 3    | 3    | 3    | 1    | 1    | 2    | 3    | 2    | 1    | 3     |
| <b>CO4</b> | 3    | 3    | 3    | 1    | 1    | 2    | 3    | 2    | 1    | 3     |
| CO5        | 3    | 3    | 3    | 1    | 1    | 2    | 3    | 1    | 1    | 3     |

#### **CORE IV - QUANTUM MECHANICS – I**

#### I YEAR - SECOND SEMESTER

| Subject<br>Code | Subject Name         | Category | L | Т | Р | Credits | Inst. Hours | Marks |
|-----------------|----------------------|----------|---|---|---|---------|-------------|-------|
|                 | QUANTUM MECHANICS –I | Core     |   |   |   | 5       | 6           | 75    |

#### **Pre-Requisites**

Newton's laws of motion, Schrodinger's equation, integration, differentiation

#### **Learning Objectives**

- To develop the physical principles and the mathematical background important to quantum mechanical descriptions.
- To describe the propagation of a particle in a simple, one-dimensional potential. To formulate and solve the Schrodinger's equation to obtain eigenvectors and energies for particle in a three-dimensional potential
- To explain the mathematical formalism and the significance of constants of motion, and see their relation to fundamental symmetries in nature
- To discuss the Approximation methods like perturbation theory, Variational and WKB methods for solving the Schrödinger equation.

| UNITS                            | Course Details                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| UNIT I:<br>BASIC<br>FORMALISM    | <ul> <li>Wave Mechanical Concepts: Wave packet - Time dependent Schrodinger</li> <li>equation –Interpretation of the wave function –Ehrenfest's theorem-</li> <li>Time independent Schrodinger equation - Stationary states — Linear</li> <li>vector space – Linear operator – Eigen functions and Eigen Values –</li> <li>Hermitian Operator – Postulates of Quantum Mechanics – Simultaneous</li> <li>measurability of observables – General Uncertainty relation.</li> </ul> |
| UNIT II:<br>GENERAL<br>FORMALISM | Dirac notation – Equations of motions – Schrodinger representation –<br>Heisenberg representation – Interaction representation –Momentum<br>representation – Symmetries and conservation laws: Conservation of<br>linear momentum, Energy and Angular momentum – Parity conservation<br>and time reversal.                                                                                                                                                                      |

| UNIT III:<br>ONE<br>DIMENSIONAL AND<br>THREEDIMENSIONAL<br>ENERGY EIGEN<br>VALUE PROBLEMS | Square – well potential with rigid walls – Square well potential with finite<br>walls – Square potential barrier – Alpha emission – Bloch waves in a<br>periodic potential – Kronig-Penny square – well periodic potential –<br>Linear harmonic oscillator: Operator method – Particle moving in a<br>spherically symmetric potential – System of two interacting particles –<br>Rigid rotator– Hydrogen atom. |
|-------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| UNIT IV:<br>APPROXIMATION<br>METHODS                                                      | Time independent perturbation theory:Non-degenerate energy levels –<br>Ground state of Helium atom – First order Stark effect in Hydrogen atom<br>– Degenerate energy levels - Excited state of Hydrogen atom - WKB<br>approximation – Connection formulae (no derivation) –Application of<br>WKB method: Barrier penetration – Alpha emission.                                                                |
| UNIT V:<br>ANGULAR<br>MOMENTUM                                                            | The Eigenvalue spectrum– Ladder operators– Matrix representation of J<br>– Spin angular momentum – Addition of angular momenta – CG<br>Coefficients – Angular momentum commutation relations – Eigen values<br>of $J^2$ and $J_z$ - Spin angular momentum - Pauli's exclusion principle.                                                                                                                       |

| TEXT BOOKS         | <ol> <li>P. M. Mathews and K. Venkatesan, A Text book of Quantum<br/>Mechanics, 2<sup>nd</sup>edition (37th Reprint), Tata McGraw-Hill, New<br/>Delhi, 2010.</li> <li>G. Aruldhas, Quantum Mechanics, 2nd edition, Prentice Hall of<br/>India, New Delhi, 2009.</li> <li>David J Griffiths, Introduction to Quantum Mechanics. 4th edition,<br/>Pearson, 2011.</li> <li>SL Gupta and ID Gupta, Advanced Quantum Theory and Fields, 1<sup>st</sup><br/>Edition, S.Chand&amp; Co., New Delhi, 1982.</li> <li>A. Ghatak and S. Lokanathan, Quantum Mechanics: Theory and<br/>Applications, 4<sup>th</sup>Edition, Macmillan, India, 1984.</li> </ol> |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| REFERENCE<br>BOOKS | <ol> <li>E. Merzbacher, Quantum Mechanics, 2nd Edition, John Wiley and<br/>Sons, New York, 1970.</li> <li>V. K. Thankappan, Quantum Mechanics, 2nd Edition, Wiley<br/>Eastern Ltd, New Delhi, 1985.</li> <li>L. D. Landau and E. M. Lifshitz, Quantum Mechanics, 1st edition,<br/>Pergomon Press, Oxford, 1976.</li> <li>S. N. Biswas, Quantum Mechanics, Books and Allied Ltd.,<br/>Kolkata, 1999.</li> <li>V. Devanathan, Quantum Mechanics, 2nd edition, Alpha Science<br/>International Ltd, Oxford, 2011.</li> </ol>                                                                                                                         |

|         | 1. http://research.chem.psu.edu/lxjgroup/download_files/chem565c7.p |
|---------|---------------------------------------------------------------------|
|         | df                                                                  |
| WEB     | 2. http://www.feynmanlectures.caltech.edu/III_20.html               |
|         | 3. http://web.mit.edu/8.05/handouts/jaffe1.pdf                      |
| SOURCES | 4. https://hepwww.pp.rl.ac.uk/users/haywood/Group_Theory_Lecture    |
|         | s/Lecture_1.pdf                                                     |
|         | 5. https://theory.physics.manchester.ac.uk/~xian/qm/chapter3.pdf    |

### At the end of the course the student will be able to:

| CO1    | Demonstrates a clear understanding of the basic postulates of quantum<br>mechanics which serve to formalize the rules of quantum Mechanics | K1,<br>K5 |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| CO2    | Is able to apply and analyze the Schrodinger equation to solve one dimensional problems and three dimensional problems                     | K3,<br>K4 |
| CO3    | Can discuss the various representations, space time symmetries and formulations of time evolution                                          | K1        |
| CO4    | Can formulate and analyze the approximation methods for various quantum mechanical problems                                                | K4,<br>K5 |
| CO5    | To apply non-commutative algebra for topics such as angular and spin<br>angular momentum and hence explain spectral line splitting.        | K3,<br>K4 |
| K1 - R | emember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 – Evaluate                                                                          |           |

# MAPPING WITH PROGRAM OUTCOMES:

|            | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | <b>PO7</b> | PO8 | PO9 | <b>PO10</b> |
|------------|-----|-----|-----|-----|-----|-----|------------|-----|-----|-------------|
| <b>CO1</b> | 3   | 3   | 3   | 3   | 3   | 2   | 3          | 2   | 2   | 3           |
| CO2        | 3   | 3   | 3   | 3   | 3   | S   | 3          | 2   | 2   | 3           |
| CO3        | 2   | 3   | 3   | 2   | 3   | 2   | 3          | 2   | 2   | 3           |
| CO4        | 3   | 3   | 3   | 3   | 3   | 2   | 3          | 3   | 2   | 3           |
| CO5        | 3   | 3   | 3   | 2   | 3   | S   | 3          | 3   | 2   | 3           |

|     | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 | PSO6 | PSO7 | PSO8 | PSO9 | PSO10 |
|-----|------|------|------|------|------|------|------|------|------|-------|
| CO1 | 3    | 3    | 3    | 3    | 3    | 2    | 3    | 2    | 2    | 3     |
| CO2 | 3    | 3    | 3    | 3    | 3    | S    | 3    | 2    | 2    | 3     |
| CO3 | 2    | 3    | 3    | 2    | 3    | 2    | 3    | 2    | 2    | 3     |
| CO4 | 3    | 3    | 3    | 3    | 3    | 2    | 3    | 3    | 2    | 3     |
| CO5 | 3    | 3    | 3    | 2    | 3    | S    | 3    | 3    | 2    | 3     |

# CORE Practical -II: GENERAL PHYSICS AND<br/>ELECTRONICS EXPERIMENTS – III YEAR - SECOND SEMESTER

| Subject<br>Code | Subject Name                                                      | Category | L | Т | Р | Credits | Inst. Hours | Marks |
|-----------------|-------------------------------------------------------------------|----------|---|---|---|---------|-------------|-------|
|                 | PRACTICAL II: General Physics and<br>Electronics Experiments – II | Core     |   |   |   | 4       | 6           | 50    |

#### **Pre-Requisites**

Knowledge and handling of basic general and electronics experiments of Physics

#### Learning Objectives

- To understand the concept of mechanical behavior of materials and calculation of same using appropriate equations.
- > To analyze the magnetic properties of materials.
- > To analyze the optical and electrical properties of materials.
- > To observe the applications of FET and UJT.
- > To study the different applications of operational amplifier circuits.
- ➢ To learn about Combinational Logic Circuits and Sequential Logic Circuits

#### **Course Details**

#### PRACTICAL II

# (Choose any SIX experiments from Part A and SIX from Part B) PART A : General Physics Experiments -II

1. Determination of Young's modulus and Poisson's ratio by Elliptical fringes - Cornu's Method

- 2. Study the beam divergence, spot size and intensity profile of Diode/He-Ne laser.
- 3. B-H curve Formation and tracing magnetic hysteresis loop and determination of energy loss for the given specimen.
- 4. Measurement of Magnetic Susceptibility by Guoy's method
- 5. Formation of acoustic grating in a given liquid and determination of velocity of ultrasonic
- wave in the liquid and compressibility of liquid. (Ultrasonic diffraction)
- 6. Determination of Thickness of thin film using Michelson Interferometer
- 7. Determination of Refractive index of liquids using diode Laser/ He Ne Laser
- 8. Determination of Numerical Apertures and Acceptance angle, attenuation of optical fibers
- 9. Equipotential lines and electric field mapping for electrodes of different shapes.
- 10. Determination of Mutual Inductance and coefficient of coupling for the given pair of coils using Heaviside Bridge method
- 11. Hall Effect determination of Hall coefficient, carrier concentration and mobility
- 12. Temperature coefficient of a thermistor using Carry Foster Bridge.

# PART B : Electronics Experiments -II

- 1. Determination of V-I Characteristics and efficiency of solar cell.
- 2. Construction of a relaxation oscillator using UJT, measuring the frequency of oscillation for different RC values and comparing it with the theoretical value.
- 3. Modulus counter using IC 7490 and seven segment display using IC 7447 / IC 7448
- 4. Solving simultaneous equations using IC 741 / IC LM324
- 5. Study of Op-Amp –Active filters: Low pass, High pass and Band pass filters
- 6. Construction of Current to Voltage and Voltage to Current Convertor using IC 741
- 7. Construction of square wave generator using IC 555 and VCO using 555
- 8. Code Conversion: BCD to Excess- 3 and Excess 3 to BCD

Binary to Gray and Gray to Binary

9. Study of Binary Ripple Counter using IC 74393 and LEDs

10. Study of RS, Clocked RS and D Flip-Flops.

11. Construction of Shift register and Ring counter using IC 7476 /IC 7474

12. Construction of Schmitt trigger circuit using IC555 for a given hysteresis – Application as squarer

|            | 1. Practical Physics, Gupta and Kumar, PragatiPrakasan                 |
|------------|------------------------------------------------------------------------|
|            | 2. Kit Developed for doing experiments in Physics- Instruction manual, |
|            | R.Srinivasan K.R Priolkar, Indian Academy of Sciences                  |
| TEXT BOOKS | 3. Op-Amp and linear integrated circuit, Ramakanth A Gaykwad, Eastern  |
|            | Economy Edition.                                                       |
|            | 4. Electronic lab manual Vol I, K ANavas, Rajath Publishing            |
|            | 5. Electronic lab manual Vol II, K ANavas, PHI eastern Economy Edition |
|            | 1. An advanced course in Practical Physics, D.Chattopadhayay,          |
|            | C.R Rakshit, New Central Book Agency Pvt. Ltd                          |
|            | 2. Advanced Practical Physics, S.P Singh, PragatiPrakasan              |
| DEFEDENCE  | 3. A course on experiment with He-Ne Laser, R.S. Sirohi, John Wiley &  |
| REFERENCE  | Sons (Asia) Pvt.ltd                                                    |
| BOOKS      | 4. Electronic lab manual Vol II, Kuriachan T.D, Syam Mohan, Ayodhya    |
|            | Publishing                                                             |
|            | 5. Electronic Laboratory Primer a design approach, S. Poornachandra,   |
|            | B.Sasikala, Wheeler Publishing, New Delhi                              |

| Continuous Internal<br>Assessment | End Semester<br>Examination | Total |  |  |  |  |  |  |  |  |
|-----------------------------------|-----------------------------|-------|--|--|--|--|--|--|--|--|
| 50                                | 50                          | 100   |  |  |  |  |  |  |  |  |

#### **METHOD OF EVALUATION:**

#### At the end of the course the student will be able to:

| CO1  | Understand the strength of material using Young's modulus                          | K2 |
|------|------------------------------------------------------------------------------------|----|
| CO2  | Acquire knowledge of thermal behavior of the materials                             | K1 |
| CO3  | Understand theoretical principles of magnetism through the experiments.            | K2 |
| CO4  | Acquire knowledge about arc spectrum and applications of laser                     | K1 |
| CO5  | Improve the analytical and observation ability in Physics Experiments              | K4 |
| CO6  | Conduct experiments on applications of UJT                                         | K5 |
| CO7  | Analyze various parameters related to operational amplifiers                       | K4 |
| CO8  | Understand the concepts involved in arithmetic and logical circuits using IC's     | K2 |
| CO9  | Acquire knowledge about Combinational Logic Circuits and Sequential Logic Circuits | K3 |
| CO10 | Analyze the applications of counters and registers                                 | K4 |

#### MAPPING WITH PROGRAM OUTCOMES

|            | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | <b>PO7</b> | PO8 | PO9 | PO10 |
|------------|-----|-----|-----|-----|-----|-----|------------|-----|-----|------|
| CO1        | 2   | 2   | 2   | S   | S   | 2   | 2          | 2   | 3   | 3    |
| CO2        | 2   | 2   | S   | S   | S   | 2   | 2          | 3   | 3   | 3    |
| CO3        | 3   | 3   | 3   | 3   | 3   | 3   | 3          | 3   | 3   | 3    |
| CO4        | 3   | 2   | 3   | 3   | 3   | 3   | 2          | 3   | 3   | 3    |
| CO5        | 3   | 3   | 3   | 3   | 3   | 3   | 3          | 3   | 3   | 3    |
| CO6        | 2   | 2   | 2   | 3   | 3   | 2   | 2          | 2   | 3   | 3    |
| <b>CO7</b> | 2   | 2   | 3   | 3   | 3   | 2   | 2          | 3   | 3   | 3    |
| CO8        | 3   | 3   | 3   | 3   | 3   | 3   | 3          | 3   | 3   | 3    |
| CO9        | 3   | 3   | 3   | 3   | 3   | 3   | 3          | 3   | 3   | 3    |
| CO10       | 3   | 3   | 3   | 3   | 3   | 3   | 3          | 3   | 3   | 3    |

|            | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 | PSO6 | PSO7 | PSO8 | PSO9 | PSO10 |
|------------|------|------|------|------|------|------|------|------|------|-------|
| CO1        | 2    | 2    | 2    | 3    | 3    | 2    | 2    | 2    | 3    | 3     |
| CO2        | 2    | 2    | 3    | 3    | 3    | 2    | 2    | 3    | 3    | 3     |
| CO3        | 3    | 3    | 3    | 3    | 3    | 3    | 3    | 3    | 3    | 3     |
| CO4        | 3    | 2    | 3    | 3    | 3    | 3    | 2    | 3    | 3    | 3     |
| CO5        | 3    | 3    | 3    | 3    | 3    | 3    | 3    | 3    | 3    | 3     |
| CO6        | 2    | 2    | 2    | S    | S    | 2    | 2    | 2    | 3    | 3     |
| CO7        | 2    | 2    | S    | S    | S    | 2    | 2    | 3    | 3    | 3     |
| <b>CO8</b> | 3    | 3    | 3    | 3    | 3    | 3    | 3    | 3    | 3    | 3     |
| CO9        | 3    | 3    | 3    | 3    | 3    | 3    | 3    | 3    | 3    | 3     |
| CO10       | 3    | 3    | 3    | 3    | 3    | 3    | 3    | 3    | 3    | 3     |

#### Skill Enhancement Course I: PHYSICS FOR COMPETITIVE EXAMINATIONS

# I YEAR - SECOND SEMESTER

| Subject<br>Code | Subject Name                            |     | L | Т | Р | Credits | Inst. Hours | Marks |
|-----------------|-----------------------------------------|-----|---|---|---|---------|-------------|-------|
|                 | PHYSICS FOR COMPETITIVE<br>EXAMINATIONS | SEC |   |   |   | 2       | 4           | 75    |

#### **Pre-Requisites**

Basic fundaments of Physics ,Newton's equations of motion, Black body radiation, Snell's law, Gauss' law, special theory of relativity etc.

#### **Learning Objectives**

- To develop the basics of physical principles and the mathematical background important to general mechanics and properties of matter.
- > To recollect the ideas of heat and thermodynamics
- Formulation of the concepts of reflection, refraction in optics and longitudinal, transverse waves in sound.
- > To explain the formalism of electricity and magnetism
- > To discuss the concepts in modern physics

| UNITS                                                          | Course Details                                                                                                                                                                                                                                                                                                                                                                                         |
|----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                | Physical quantities - SI system of units - dimensions - scalars and vectors                                                                                                                                                                                                                                                                                                                            |
| UNIT I:<br>GENERAL<br>MECHANICS AND<br>PROPERTIES OF<br>MATTER | (Concepts) - Newton's equations of motion - impulse - principle of<br>conservation of linear momentum - projectile motion - Kepler's laws -<br>Newton's law of gravitation - acceleration due to gravity - escape velocity -<br>angular momentum - banking of roads - simple harmonic motion - viscosity<br>- surface Tension.                                                                         |
| UNIT II:<br>HEAT AND<br>THERMO<br>DYNAMICS                     | Different scales of temperatures - thermal expansions - calorimetry - specific<br>heat - latent heat - triple point - transmission of heat - heat conductivity -<br>Black body radiation - Stefan Boltzmann law - Wien's displacement law -<br>Gas equation - Boyle's law - Charle's law - Law of equipartition of energy.                                                                             |
| UNIT III:<br>LIGHT AND<br>SOUND                                | Reflection and refraction - Snell's law - total internal reflection - polarization<br>- Brewster's Law - Huygen's principle – Young's double slit interference<br>and single slit diffraction - longitudinal and transverse waves - velocity of<br>sound - Newton's formula, Laplace correction, effects of pressure - beats -<br>laws of vibrating strings - open and closed organ pipes - resonance. |

| UNIT IV:<br>ELECTRICITY<br>AND MAGNETISM | Coulomb's Law - Electric field due to charged particles: a point charge, a dipole, a line of charge - electric flux - Gauss' law and applications – Biot-Savart law, magnetic field due to a current in: a long straight wire, a circular arc of wire - Ampere's Law - magnetic field outside and inside a long straight                                          |
|------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                          | wire - solenoids and toroids - Faraday's laws and Lenz's law                                                                                                                                                                                                                                                                                                      |
| UNIT V:<br>MODERN<br>PHYSICS             | Postulates of Einstein's theory of relativity - Galilean and Lorentz transformation - time dilation - length contraction - Planck's radiation - photoelectric effect - Compton shift, matter waves - Bohr's atomic theory. Nuclear properties - binding energy and mass defect -radioactive decay - alpha decay, beta decay and gamma decay - Radioactive dating. |

|            | 1. J. Walker, D. Halliday, R. Resnick, Fundamentals of Physics, 10th   |  |  |  |  |  |  |  |
|------------|------------------------------------------------------------------------|--|--|--|--|--|--|--|
|            | Edition, Wiley, United states of America, 2007.                        |  |  |  |  |  |  |  |
|            | 2. H.C Verma, Concept of Physics, (Volume I), 1st Edition, Bharati     |  |  |  |  |  |  |  |
| TEXT BOOKS | Bhawan Publishers & Distributors, New Delhi, 2008.                     |  |  |  |  |  |  |  |
| TEXT DOORS | 3. H.C Verma, Concept of Physics, (Volume II), 1st Edition, Bharati    |  |  |  |  |  |  |  |
|            |                                                                        |  |  |  |  |  |  |  |
|            | Bhawan Publishers & Distributors, New Delhi, 2008.                     |  |  |  |  |  |  |  |
|            | 1. Michael Nelkon, Philip Parker, Advanced Level Physics, 7th Edition, |  |  |  |  |  |  |  |
| REFERENCE  | CBS Publishers, India, 1995                                            |  |  |  |  |  |  |  |
| BOOKS      | 2. D. Young Hugh, A. Freedman Roger, University Physics with           |  |  |  |  |  |  |  |
| DOOMS      | Modern Physics, 14th Edition, Pearson Education, India, 2017.          |  |  |  |  |  |  |  |
|            | 1. https://hcverma.in/                                                 |  |  |  |  |  |  |  |
| WEB SOURCE |                                                                        |  |  |  |  |  |  |  |
|            |                                                                        |  |  |  |  |  |  |  |

# At the end of the course the student will be able to:

| CO1    | acquire the knowledge of the fundamental concept of physics                                                 | K1 |
|--------|-------------------------------------------------------------------------------------------------------------|----|
| CO2    | understand the concepts of fundamental physics                                                              | K2 |
| CO3    | apply the concept of physics to solve various problems                                                      | К3 |
| CO4    | strengthen an appropriate problem-solving approach and assess a step to describe the quantitative analysis. | K4 |
| CO5    | evaluate the results of new analytical problems and develop a correct solutions or conclusions              | K5 |
| K1 - R | emember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 – Evaluate                                           | -  |

#### MAPPING WITH PROGRAM OUTCOMES:

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | <b>PO7</b> | PO8 | PO9 | PO10 |
|-----|-----|-----|-----|-----|-----|-----|------------|-----|-----|------|
| CO1 | 2   | 3   | 2   | 2   | 2   | 2   | 3          | 2   | 2   | 3    |
| CO2 | 3   | 3   | 2   | 2   | 3   | 2   | 3          | 2   | 2   | 3    |
| CO3 | 3   | 3   | 2   | 2   | 3   | 2   | 3          | 2   | 2   | 3    |
| CO4 | 3   | 3   | 2   | 2   | 3   | 2   | 3          | 3   | 2   | 3    |
| CO5 | 3   | 3   | 2   | 2   | 3   | 2   | 3          | 3   | 2   | 3    |

|     | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 | PSO6 | PSO7 | PSO8 | PSO9 | PSO10 |
|-----|------|------|------|------|------|------|------|------|------|-------|
| CO1 | 3    | 2    | 2    | 1    | 1    | 2    | 3    | 2    | 2    | 3     |
| CO2 | 3    | 2    | 2    | 2    | 3    | 2    | 3    | 2    | 2    | 3     |
| CO3 | 2    | 3    | 3    | 2    | 1    | 2    | 3    | 2    | 2    | 3     |
| CO4 | 1    | 3    | 3    | 2    | 1    | 2    | 3    | 3    | 2    | 3     |
| CO5 | 1    | 3    | 3    | 2    | 1    | 2    | 3    | 3    | 2    | 3     |

| CORE V: 0       | CORE V: QUANTUM MECHANICS – II |          |   |   | II YEAR - THIRD SEMESTER |         |             |       |  |  |  |  |  |  |
|-----------------|--------------------------------|----------|---|---|--------------------------|---------|-------------|-------|--|--|--|--|--|--|
| Subject<br>Code | Subject Name                   | Category | L | Т | Р                        | Credits | Inst. Hours | Marks |  |  |  |  |  |  |
|                 | QUANTUM MECHANICS – II         | Core     |   |   |                          | 5       | 5           | 75    |  |  |  |  |  |  |

#### **Pre-Requisites**

Knowledge of postulates of Quantum mechanics, properties of Hermitian operators, ladder operators, degeneracy, angular momentum techniques and commutation rules

#### Learning Objectives

- Formal development of the theory and the properties of angular momenta, both orbital and spin
- To familiarize the students to the crucial concepts of scattering theory such as partial wave analysis and Barn approximation.
- Time-dependent Perturbation theory and its application to study of interaction of an atom with the electromagnetic field
- To give the students a firm grounding in relativistic quantum mechanics, with emphasis on Dirac equation and related concepts
- To introduce the concept of covariance and the use of Feynman graphs for depicting different interactions

#### **UNIT I: SCATTERING THEORY**

Scattering amplitude – Cross sections – Born approximation and its validity – Scattering by a screened coulomb potential – Yukawa potential – Partial wave analysis – Scattering length and Effective range theory for S wave – Optical theorem – Transformation from centre of mass to laboratory frame.

#### **UNIT II: PERTURBATION THEORY**

Time dependent perturbation theory – Constant and harmonic perturbations – Fermi Golden rule – Transition probability - Einstein's A and B Coefficients – Adiabatic approximation – Sudden approximation – Semi – classical treatment of an atom with electromagnetic radiation – Selection rules for dipole radiation .

#### UNIT III: RELATIVISTIC QUANTUM MECHANICS

Klein – Gordon Equation – Charge and Current Densities – Dirac Matrices – Dirac Equation – Plane Wave Solutions – Interpretation of Negative Energy States – Antiparticles – Spin of Electron - Magnetic Moment of an Electron Due to Spin.

#### **UNIT IV: DIRAC EQUATION**

Covariant form of Dirac Equation – Properties of the gamma matrices – Traces – Relativistic invariance of Dirac equation – Probability Density – Current four vector – Bilinear covariant – Feynman 's theory of positron (Elementary ideas only without propagation formalism)

#### UNIT V: CLASSICAL FIELDS AND SECOND QUANTIZATION

Classical fields – Euler Lagrange equation – Hamiltonian formulation – Noether's theorem – Quantization of real and complex scalar fields – Creation, Annihilation and Number operators – Fock states – Second Quantization of K-G field.

#### TEXT BOOKS

- 1. P. M. Mathews and K. Venkatesan, A Text book of Quantum Mechanics, 2nd Edition, Tata McGraw-Hill, New Delhi, 2010.
- 2. G. Aruldhas, Quantum Mechanics, 2nd Edition, Prentice-Hall of India, NewDelhi,2009

3. L. I. Schiff, Quantum Mechanics, 3rd Edition, International Student Edition, McGraw-Hill Kogakusha, Tokyo, 1968

4. V. Devanathan, Quantum Mechanics, 1st Edition, Narosa Publishing House, New Delhi, 2005.

5. Nouredine Zettili, Quantum mechanics concepts and applications, 2nd Edition, Wiley, 2017.

#### **REFERENCE BOOKS**

1. P. A. M. Dirac, The Principles of Quantum Mechanics, 4th Edition, Oxford University Press, London, 1973.

2. B. K. Agarwal&HariPrakash, Quantum Mechanics, 7th reprint, PHI Learning Pvt. Ltd., New Delhi, 2009.

3. Deep Chandra Joshi, Quantum Electrodynamics and<br/>1stedition,I.K.International Publishing house Pvt. Ltd., 2006ParticlePhysics,

4. Ghatak and S. Lokanathan, Quantum Mechanics: Theory and Applications, 4th Edition, Macmillan India, New Delhi.

5. E. Merzbacher, Quantum Mechanics, 2nd edition, John Wiley and Sons, New York, 1970.

#### **WEB SOURCES**

1. https://ocw.mit.edu/courses/physics/8-05-quantum-physics-ii-fall-2013/lecture notes/MIT8\_05F13\_Chap\_09.pdf

- 2. http://www.thphys.nuim.ie/Notes/MP463/MP463\_Ch1.pdf
- 3. http://hep.itp.tuwien.ac.at/~kreuzer/qt08.pdf
- 4. https://www.cmi.ac.in/~govind/teaching/rel-qm-rc13/rel-qm-notes-gk.pdf
- 5. https://web.mit.edu/dikaiser/www/FdsAmSci.pdf

#### **COURSE OUTCOMES:**

#### At the end of the course the student will be able to:

| 001 | Familiarize the concept of scattering theory such as partial wave analysis and Born approximation                                                                               | K1     |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| CO2 | Give a firm grounding in relativistic quantum mechanics, with emphasis on<br>Dirac equation and related concepts                                                                | K2     |
| CO3 | Discuss the relativistic quantum mechanical equations namely, Klein-Gordon<br>and Dirac equations and the phenomena accounted by them like electron spin<br>and magnetic moment | K1, K4 |
| CO4 | Introduce the concept of covariance and the use of Feynman graphs for depicting different interactions                                                                          | K1, K3 |
| CO5 | Demonstrate an understanding of field quantization and the explanation of the scattering matrix.                                                                                | K5     |

#### **MAPPING WITH PROGRAM OUTCOMES:**

|            | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | <b>PO7</b> | PO8 | PO9 | PO10 |
|------------|-----|-----|-----|-----|-----|-----|------------|-----|-----|------|
| CO1        | 3   | 3   | 3   | 3   | 3   | 3   | 3          | 3   | 3   | 3    |
| CO2        | 3   | 3   | 2   | 3   | 3   | 3   | 3          | 3   | 3   | 3    |
| CO3        | 3   | 2   | 2   | 3   | 3   | 2   | 3          | 3   | 3   | 3    |
| <b>CO4</b> | 2   | 1   | 1   | 3   | 3   | 1   | 2          | 2   | 3   | 3    |
| CO5        | 2   | 1   | 1   | 3   | 3   | 2   | 2          | 2   | 3   | 3    |

|     | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 | PSO6 | PSO7 | PSO8 | PSO9 | PSO10 |
|-----|------|------|------|------|------|------|------|------|------|-------|
| CO1 | 3    | 3    | 3    | 3    | 3    | 3    | 3    | 3    | 3    | 3     |
| CO2 | 3    | 3    | 2    | 3    | 3    | 3    | 3    | 3    | 3    | 3     |
| CO3 | 3    | 2    | 2    | 3    | 3    | 2    | 3    | 3    | 3    | 3     |
| CO4 | 2    | 1    | 1    | 3    | 3    | 1    | 2    | 2    | 3    | 3     |
| CO5 | 2    | 1    | 1    | 3    | 3    | 2    | 2    | 2    | 3    | 3     |

#### **CORE VI - CONDENSED MATTER PHYSICS**

**II YEAR - THIRD SEMESTER** 

| Subject<br>Code | Subject Name             | Category | L | Т | Р | Credits | Inst. Hours | Marks |
|-----------------|--------------------------|----------|---|---|---|---------|-------------|-------|
|                 | CONDENSED MATTER PHYSICS | Core     |   |   |   | 5       | 5           | 75    |

#### **Pre-Requisites**

Basic knowledge of atomic physics, quantum mechanics and statistical mechanics.

#### **Learning Objectives**

- To describe various crystal structures, symmetry and to differentiate different types of bonding.
- To construct reciprocal space, understand the lattice dynamics and apply it to concept of specific heat.
- To critically assess various theories of electrons in solids and their impact in distinguishing solids.
- > Outline different types of magnetic materials and explain the underlying phenomena.
- Elucidation of concepts of superconductivity, the underlying theories relate to current areas of research.

#### UNIT I: CRYSTAL PHYSICS

Types of lattices - Miller indices – Symmetry elements and allowed rotations - Simple crystal structures – Atomic Packing Factor- Crystal diffraction - Bragg's law – Scattered Wave Amplitude - Reciprocal Lattice (SC,BCC, FCC). Structure and properties of liquid crystals. Diffraction Conditions - Laue equations - Brillouin zone - Structure factor - Atomic form factor - Inert gas crystals - Cohesive energy of ionic crystals - Madelung constant - Types of crystal binding (general ideas).

#### UNIT II: LATTICE DYNAMICS

Lattice with two atoms per primitive cell - First Brillouin zone - Group and phase velocities -Quantization of lattice vibrations - Phonon momentum - Inelastic scattering by phonons - Debye's theory of lattice heat capacity - Thermal Conductivity - Umklapp processes.

#### UNIT III: THEORY OF METALS AND SEMICONDUCTORS

Free electron gas in three dimensions - Electronic heat capacity - Wiedemann-Franz Law - Band theory of metals and semiconductors - Bloch theorem - Kronig-Penney model - Semiconductors - Intrinsic carrier concentration – Temperature Dependence - Mobility - Impurity conductivity – Impurity states - Hall effect - Fermi surfaces and construction - Experimental methods in Fermi surface studies - De Hass-van Alphen effect.

#### **UNIT IV: MAGNETISM**

Diamagnetism - Quantum theory of Para-magnetism - Rare earth ion - Hund's rule - Quenching of orbital angular momentum - Adiabatic demagnetization - Quantum theory of ferromagnetism - Curie point - Exchange integral - Ferromagnetic domains - Bloch wall - Spin waves -

Quantization - Magnons - Thermal excitation of magnons - Curie temperature and susceptibility of ferrimagnets - Theory of antiferromagnetic material - Neel temperature.

#### **UNIT V: SUPERCONDUCTIVITY**

Experimental facts: Occurrence - Effect of magnetic fields - Meissner effect – Critical field – Critical current - Type I and II Superconductors. Theoretical Explanation: Thermodynamics of super conducting transition - London equations - Coherence length – Isotope effect - Cooper pairs – Bardeen Cooper Schrieffer (BCS) Theory - Single particle tunneling - Josephson tunneling - DC and AC Josephson effects - High Temperature Superconductors – SQUIDS.

#### TEXT BOOKS

- 1. C. Kittel, 1996, Introduction to Solid State Physics, 7th Edition, Wiley, New York.
- 2. Rita John, Solid State Physics, Tata Mc-Graw Hill Publication.
- 3. A. J. Dekker, Solid State Physics, Macmillan India, New Delhi.
- 4. M. Ali Omar, 1974, Elementary Solid State Physics Principle and Applications, Addison
   Wesley
- 5. H. P. Myers, 1998, Introductory Solid State Physics, 2nd Edition Viva Book, New Delhi.

#### **REFERENCE BOOKS**

- 6. J. S. Blakemore, 1974, Solid state Physics, 2<sup>nd</sup> Edition, W.B. Saunder, Philadelphia
- 7. H. M. Rosenburg, 1993, *The Solid State*, 3<sup>rd</sup> Edition, Oxford University Press, Oxford.

8. J. M. Ziman, 1971, Principles of the Theory of Solids, Cambridge University Press, London.

9. C. Ross-Innes and E. H. Rhoderick, 1976, *Introduction to Superconductivity*, Pergamon, Oxford.

10. J. P. Srivastava, 2001, *Elements of Solid State Physics*, Prentice-Hall of India, New Delhi.

#### WEB SOURCES

- 1. http://www.physics.uiuc.edu/research/electronicstructure/389/389-cal.html
- 2. http://www.cmmp.ucl.ac.uk/%7Eaph/Teaching/3C25/index.html
- 3. https://www.britannica.com/science/crystal
- 4. https://www.nationalgeographic.org/encyclopedia/magnetism/
- 5. https://www.brainkart.com/article/Super-Conductors\_6824/

#### **COURSE OUTCOMES:**

#### At the end of the course, the student will be able to:

| CO1    | Student will be able to list out the crystal systems, symmetries allowed in a system<br>and also the diffraction techniques to find the crystal structure | K1     |  |  |  |  |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--|--|--|--|
|        | Students will be able to visualize the idea of reciprocal spaces, Brillouin Zone and their extension to band theory of solids.                            | K1, K2 |  |  |  |  |
| CO3    | Student will be able to comprehend the heat conduction in solids                                                                                          |        |  |  |  |  |
| CO4    | Student will be able to generalize the electronic nature of solids from band theories.                                                                    | K3, K4 |  |  |  |  |
| CO5    | Student can compare and contrast the various types of magnetism and conceptualize the idea of superconductivity.                                          | K5     |  |  |  |  |
| K1 - R | Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 – Evaluate                                                                                        |        |  |  |  |  |

#### MAPPING WITH PROGRAM OUTCOMES

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | <b>PO7</b> | PO8 | PO9 | PO10 |
|-----|-----|-----|-----|-----|-----|-----|------------|-----|-----|------|
| CO1 | 3   | 2   | 3   | 2   | 2   | 2   | 2          | 2   | 2   | 2    |
| CO2 | 3   | 2   | 3   | 2   | 3   | 2   | 3          | 3   | 2   | 3    |
| CO3 | 3   | 3   | 3   | 2   | 3   | 2   | 3          | 3   | 2   | 3    |
| CO4 | 2   | 2   | 2   | 2   | 2   | 2   | 2          | 2   | 2   | 3    |
| CO5 | 2   | 2   | 2   | 2   | 2   | 2   | 2          | 2   | 2   | 3    |

|     | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 | PSO6 | PSO7 | PSO8 | PSO9 | PSO10 |
|-----|------|------|------|------|------|------|------|------|------|-------|
| CO1 | 3    | 2    | 3    | 2    | 2    | 2    | 2    | 2    | 2    | 2     |
| CO2 | 3    | 2    | 3    | 2    | 3    | 2    | 3    | 3    | 2    | 3     |
| CO3 | 3    | 3    | 3    | 2    | 3    | 2    | 3    | 3    | 2    | 3     |
| CO4 | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 3     |
| CO5 | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 3     |

#### CORE Paper VII - NUMERICAL METHODS AND PROGRAMMING IN C++

| II YEAR – | THIRD | SEMESTER |
|-----------|-------|----------|
|           |       |          |

| Subject<br>Code | Subject Name                                | Category | L | Т | Р | Credits | Instruction<br>Hours | Marks |
|-----------------|---------------------------------------------|----------|---|---|---|---------|----------------------|-------|
|                 | NUMERICAL METHODS AND<br>PROGRAMMING IN C++ | Core     |   |   |   | 5       | 5                    | 75    |

| Pre-Requisites                                                                         |
|----------------------------------------------------------------------------------------|
| Prior knowledge on computer and basic mathematics                                      |
| Learning Objectives                                                                    |
| To make students to understand different numerical approaches to solve a problem.      |
| To understand the basics of programming and its application to solve physical problems |

#### **UNIT I -ROOTS OF EQUATION**

Roots of equation: Bisection method – False position method – Newton Raphson method – Secant method – Order of convergence. Simultaneous Equations: Existence of solutions- Basic Gauss elimination method – Gauss Jacobi iteration method – Gauss Seidal iteration method – Inverse of a matrix using Gauss elimination method .

#### UNIT II - CURVE FITTING - INTERPOLATION

Curve fitting: Method of least squares – straight line, fitting a parabola, fitting  $y = ax^n$ ,  $y = ae^{bx}$  type curves – **Interpolation:** Polynomial Interpolation – Lagrange polynomial – Newton polynomial - Forward and Backward differences – Gregory Newton forward and backward interpolation formula for equal intervals – Divided difference – properties of divided differences – Newton's divided differences formula – Lagrange's interpolation formula for unequal interval

#### UNIT III – EIGEN VALUES, DIFFERENTIATION AND INTEGRATION

Eigenvalues: Power method to find dominant Eigenvalue - Jacobi method

**Numerical differentiation**: Numerical differentiation – Formulae for derivatives – Taylors Series Method - Forward backward differences and central difference formula **Numerical Integration** : Newton – cotes formula – Trapezoidal rule, Simpson's 1/3 rule, Simpson's 3/8 rule, – Error estimates in trapezoidal and Simpson's rule – Monte Carlo Method.

#### **UNIT IV - DIFFERENTIAL EQUATIONS**

**Ordinary differential equation:** Solution by Taylor's series — Basic Euler method –Improved and Modified Euler method – Runge Kutta fourth order method – solution of simultaneous first order differential equations and second order differential equations by RK fourth order Method

**Partial differential equation**: Introduction- Classification of partial differential equation of the 2nd order – Finite Difference approximations - Solution of Laplace's equation – Solution of Poisson's Equation –standard five point formula and diagonal five point formula (Jacobi and Gauss Seidal Methods).

#### UNIT V : PROGRAMMING IN C++

Program structure and header files - Basic data types- operators - Control Structures: decision making and looping statements. Arrays, Strings, Structures, Pointers and File handling. Application programs – Solution to Algebraic and transcendental equations by Newton Raphson Method - Charging and discharging of a condenser by Euler's Method – Radioactive Decay by Runge Kutta fourth order method - Currents in Wheatstone's bridge by Gauss elimination method - Cauchy's constant by least square method - Evaluation of integral by Simpson's and Monte-Carlo methods - Newton's Law of cooling by Numerical differentiation.

#### TEXT BOOKS

- 1. Introductory methods of numerical analysis, S. S. Sastry, Prentice Hall of India, 2010
- 2. Numerical methods for mathematics, science and engineering, John H. Matthews, Prentice Hall of India, 2nd Edition, 2000
- 3. M. K. Jain, S. R. K. Iyengar, R. K. Jain, Numerical Methods for Scientific and Engineering computation, 3 rd edition, New age international (P) Ltd, Chennai , 1998.
- 4. Object Oriented Programming with C++ by E. Balagurusamy, Tata McGraw-Hill , India, 4th Edition

#### **REFERENCE BOOKS**

- 1. Computer Applications in Physics, S. Chandra, M.K. Sharma, Narosa, 3rd Edition, 2014
- 2. M. K. Venketraman, Numerical Methods in Science and Engineering 2nd Ed., National Publishing Co., Chennai (2010).
- 3. E. Balagurusamy, Computer Oriented Statistical and Numerical Methods, Macmillan India Ltd, New Delhi (2000).

#### **Related online resources:**

- 1. https://youtu.be/LbKKzMag5Rc
- 2. https://youtu.be/Xb9Ypn77LBo
- 3. https://youtu.be/FfqAIlOxkoY

#### **COURSE OUTCOMES:**

#### At the end of the course, the student will be able to:

|        | Recall the transcendental equations and analyze the different root finding methods.<br>Understand the basic concept involved in root finding procedure such as Newton<br>Raphson and Bisection methods, their limitations. |              | K2 |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|----|
|        | Relate Simultaneous linear equations and their matrix representation Distinguish between various methods in solving simultaneous linear equations.                                                                         | K5           |    |
|        | Understand, how interpolation will be used in various realms of physics and Apply to some simple problems Analyze the newton forward and backward interpolation                                                            |              | K3 |
|        | Recollect and apply methods in numerical differentiation and integration. Assess the trapezoidal and Simpson's method of numerical integration.                                                                            | <b>K3,</b> 1 | K4 |
| CO5    | Understand the basics of C++-programming and conditional statements.                                                                                                                                                       | K2           |    |
| K1 - R | emember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate;                                                                                                                                                         |              |    |

#### **MAPPING WITH PROGRAM OUTCOMES:**

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | <b>PO7</b> | PO8 | PO9 | PO10 |
|-----|-----|-----|-----|-----|-----|-----|------------|-----|-----|------|
| CO1 | 3   | 2   | 3   | 1   | 1   | 2   | 3          | 2   | 2   | 3    |
| CO2 | 3   | 2   | 3   | 1   | 1   | 2   | 3          | 2   | 2   | 3    |
| CO3 | 3   | 2   | 3   | 1   | 1   | 2   | 3          | 2   | 2   | 3    |
| CO4 | 3   | 2   | 3   | 1   | 1   | 2   | 3          | 2   | 2   | 3    |
| CO5 | 3   | 2   | 3   | 1   | 1   | 2   | 3          | 2   | 2   | 3    |

|     | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 | PSO6 | PSO7 | PSO8 | PSO9 | PSO10 |
|-----|------|------|------|------|------|------|------|------|------|-------|
| C01 | 3    | 2    | 3    | 1    | 1    | 2    | 3    | 2    | 2    | 3     |
| CO2 | 3    | 2    | 3    | 1    | 1    | 2    | 3    | 2    | 2    | 3     |
| CO3 | 3    | 2    | 3    | 1    | 1    | 2    | 3    | 2    | 2    | 3     |
| CO4 | 3    | 2    | 3    | 1    | 1    | 2    | 3    | 2    | 2    | 3     |
| CO5 | 3    | 2    | 3    | 1    | 1    | 2    | 3    | 2    | 2    | 3     |

#### Core Practical III : ADVANCED PHYSICS EXPERIMENTS – I AND MICROPROCESSOR 8085 & MICROCONTROLLER 8051 PROGRAMMING

II YEAR – THIRD SEMESTER

| Subject<br>Code | Subject Name                                                                                            | Category | L | Т | Р | Credits | Instructio<br>n Hours | Marks |
|-----------------|---------------------------------------------------------------------------------------------------------|----------|---|---|---|---------|-----------------------|-------|
|                 | ADVANCED PHYSICS<br>EXPERIMENTS – I AND<br>MICROPROCESSOR 8085 &<br>MICROCONTROLLER 8051<br>PROGRAMMING | Core     |   |   |   | 4       | 6                     | 50    |

| Pre-Requisites                                                                                                                                                       |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Prior knowledge of basic physics and programming skills.                                                                                                             |
| Learning Objectives                                                                                                                                                  |
| <ul> <li>To make students to understand different concepts of physics</li> <li>To understand the basics of microprocessor and microcontroller programming</li> </ul> |

#### Advanced Physics Experiments – I and Microprocessor 8085 & Microcontroller 8051 Programming

#### Section A (Any 6 Experiments)

- 1. Determination of Cauchy's Constant of the given prism material. Obtain data by doing the Cauchy's Experiment and fitting a straight line using any software.
- 2. Determination of Rydberg constant using Hydrogen Vapor lamp source.
- 3. Determination of Magneto resistance of the given material.
- 4. Determination of Dielectric constant of the given liquid medium using Colpitt's oscillator or LCR circuit.
- 5. Study of Characteristics of a Photo Transistor.
- 6. Study the performance characteristics of the temperature Sensor LM35
- 7. Analysis of rotation and vibration spectrum /Interpretation of vibrational spectra of a given material
- 8. Determination of e/k using Transistors
- 9. Approximate determination of Fermi Energy of Copper (Heating & Cooling method)
- 10. To study V-I Characteristics, Load Response, and Spectral Response of Photovoltaic Solar Cell
- 11. Labview / Pspice Simulation: Designing and simulating an Astable Multivibrator using a 555 Timer for the given frequency.
- 12. Labview / Pspice Simulation: Simulation of a Zener diode characteristics and voltage regulator.

#### Section B : Microprocessor 8085 and Microcontroller 8051 Programming

#### (Any 6 Experiments) All Programs should contain Algorithms and Flowcharts

#### 8085 Microprocessor Programs

#### **1. Arithmetic Operations**

- a) Addition and Subtraction of two 8 bit numbers
- b) Multiplication of two 8 bit numbers -16-bit result.
- c) Division of 16 bit number by 8 bit number.

#### 2. Data Manipulation

- a) Arrange the given data items in Ascending or Descending order
- b) Finding the Minimum or Maximum value in the given data set.
- c) Search of a given character/number in the given data set.

#### 3. System Call and Rolling a character

a) Calculation of time delay for a given interval.

b) Roll a given character from Left to Right / Right to Left on the 7 segment displays with the specified time interval.

#### 4. ADC Interfacing and Conversion

a) Interfacing ADC with 8085 – ADC chip Block diagram – 8085 - ADC interfacing diagram b) Conversion of analog input to digital – Resolution – Graph between input and output.

#### 5. DAC interfacing and Wave form generation.

Interfacing DAC with 8085 – DAC Chip Block diagram – 8085 - DAC - 8085 interfacing diagram. Wave Form Generation using DAC.

a) Square wave with the specified period T

- b) Rectangular Wave with Specified  $T_H$  and  $T_L$
- d) Ramp Wave

#### 8051 Programs using Trainer Kit or Using Simulator - MCU8051 IDE (Freeware)

#### 6. Data Transfer Programming

a) Write an assembly language program to transfer N bytes of data from location A: XX H to location B: YY H

b) Write an assembly language program to exchange N bytes of data at location A: XX H and at location B:YY H.

#### 7. Data Manipulation

a) Write an assembly language program to find the largest element in a given array of N bytes at location 0400h. Store the largest element at location 0500h.

b) Write an assembly language program to count number of ones and zeros in an eight bit Number.

#### 8. Arithmetic Programming

- a) Write an assembly language program to perform the addition of two 16-bit numbers.
- b) Write an assembly language program to perform the subtraction of two 16-bit numbers.
- c) Write an assembly language program to perform the multiplication of two 8-bit numbers.
- d) Write an assembly language program to find the square of a given number N.

#### 9. Code Conversion

- a) Write an assembly language program to convert a BCD number into ASCII.
- b) Write an assembly language program to convert a ASCII number into Decimal.
- c) Write an assembly language program to convert a decimal number into ASCII.
- d) Write an assembly language program to convert a binary (hex) number into decimal.
- e) BCD to 7 Segment Code

#### **10.** Counter

Write an assembly language program to implement a decimal counter and show the count on the 7segment display virtual hardware available in the simulator. Write and use a proper delay routine.

#### **COURSE OUTCOMES:**

#### At the end of the course, the student will be able to:

| CO1     | Determination of some physical constants using specialized instruments   | K1, K2 |  |  |  |  |  |  |
|---------|--------------------------------------------------------------------------|--------|--|--|--|--|--|--|
| CO2     | Spectral data analysis techniques and interpretation                     | К5     |  |  |  |  |  |  |
| CO3     | Simulation of some physical experiments using specialized software       | K2, K3 |  |  |  |  |  |  |
| CO4     | Hands on experience with microprocessor Programming                      | КЗ,    |  |  |  |  |  |  |
| CO5     | Hands on experience with Microcontroller Programming                     | K3     |  |  |  |  |  |  |
| K1 - Re | K1 - Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate; |        |  |  |  |  |  |  |

#### MAPPING WITH PROGRAM OUTCOMES:

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | <b>PO7</b> | PO8 | PO9 | PO10 |
|-----|-----|-----|-----|-----|-----|-----|------------|-----|-----|------|
| CO1 | 2   | 2   | 2   | 3   | 2   | 2   | 2          | 1   | 2   | 3    |
| CO2 | 2   | 2   | 3   | 3   | 3   | 3   | 3          | 3   | 3   | 3    |
| CO3 | 3   | 3   | 3   | 3   | 3   | 3   | 3          | 3   | 3   | 3    |
| CO4 | 3   | 2   | 3   | 3   | 3   | 3   | 3          | 3   | 3   | 3    |
| CO5 | 3   | 3   | 3   | 3   | 3   | 3   | 2          | 2   | 2   | 2    |

#### SEC –II : SEWAGE AND WASTE WATER TREATMENT AND REUSE

### **II YEAR - THIRD SEMESTER**

| Subject<br>Code | Subject Name                                  | Category | L | Т | Ь | Credits | Instruction<br>Hours | Marks |
|-----------------|-----------------------------------------------|----------|---|---|---|---------|----------------------|-------|
|                 | SEWAGE AND WASTE WATER<br>TREATMENT AND REUSE | SEC      |   |   |   | 2       | 4                    | 75    |

#### **Pre-Requisites**

Basic knowledge of classification of sewage and waste water and its harmful effects and its recycling.

#### **Learning Objectives**

- > To gain basic knowledge in sewage and waste water Treatment procedures
- > To gain industry exposure and be equipped to take up job.
- > To harness entrepreneurial skills.
- > To analyze the status of sewage and waste water management in the nearby areas.
- > To sensitize the importance of healthy practices in waste water management.

| UNITS                                      | Course Details                                                                                                                                                                                                                                                                                                            |
|--------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| UNIT I:<br>RECOVERY &<br>REUSE OF<br>WATER | Recovery & Reuse of water from Sewage and Waste water: Methods of<br>recovery: Flocculation - Sedimentation - sedimentation with coagulation<br>- Filtration - sand filters - pressure filters - horizontal filters - vector<br>control measures in industries - chemical and biological methods of vector<br>eradication |
| UNIT II:<br>DISINFECTION                   | Disinfection: Introduction to disinfection and sterilization: Disinfectant -<br>UV radiation - Chlorination - Antisepsis - Sterilant - Aseptic and sterile<br>Bacteriostatic and Bactericidal - factors affecting disinfection.                                                                                           |
| UNIT III:<br>CHEMICAL<br>DISINFECTION      | Chemical Disinfection: Introduction - Theory of Chemical Disinfection<br>Chlorination Other Chemical Methods - Chemical Disinfection Treatments<br>Requiring - Electricity - Coagulation/Flocculation Agents as Pretreatment<br>Disinfection By-Products(DBPs)                                                            |
| UNIT IV:<br>PHYSICAL<br>DISINFECTION       | Physical Disinfection: Introduction - Ultraviolet Radiation - Solar<br>Disinfection - Heat Treatment - Filtration Methods - Distillation<br>Electrochemical Oxidation Water Disinfection by Microwave Heating.                                                                                                            |
| UNIT V:<br>INDUSTRIAL<br>VISIT             | Industrial visit – data collection and analysis - presentation                                                                                                                                                                                                                                                            |

|                    | 1. Drinking water and disinfection technique, Anirudhha Balachandra.<br>CRC press (2013)                                 |
|--------------------|--------------------------------------------------------------------------------------------------------------------------|
|                    | <ol> <li>Design of Water and Wastewater Treatment Systems (CV-424/434),<br/>Shashi Bushan,)</li> </ol>                   |
| TEXT BOOKS         | 3. Integrated Water Resources Management, Sarbhukan M M, CBS PUBLICATION (2013)                                          |
|                    | <ul> <li>4. C.S. Rao, Environmental Pollution Control Engineering, New Age<br/>International, 2007</li> </ul>            |
|                    | 5. S.P. Mahajan, Pollution control in process industries, 27th Ed. Tata McGraw Hill Publishing Company Ltd., 2012.       |
|                    | 1. Handbook of Water and Wastewater Treatment Plant Operations,<br>Frank. R Spellman, CRC Press, 2020                    |
|                    | <ol> <li>Wastewater Treatment Technologies, MritunjayChaubey, Wiley,<br/>2021.</li> </ol>                                |
| REFERENCE<br>BOOKS | 3. Metcalf and Eddy, Wastewater Engineering, 4th ed., McGraw Hill Higher Edu., 2002.                                     |
| books              | <ol> <li>W. Wesley Eckenfelder, Jr., Industrial Water Pollution Control, 2nd<br/>Edn., McGraw Hill Inc., 1989</li> </ol> |
|                    | <ol> <li>Lancaster, Green Chemistry: An Introductory Text, 2nd edition, RSC publishing, 2010.</li> </ol>                 |
|                    | 1. https://www.google.co.in/books/edition/Drinking_Water_Disinfectio                                                     |
|                    | <u>nTechniques/HVbNBQAAQBAJ?hl=en</u><br>2.https://www.meripustak.com/Integrated-Solid-Waste-Management-                 |
|                    | Engineering-Principles-And-Management-Issues-125648?                                                                     |
|                    | <u>3.https://www.meripustak.com&amp;gclid=Cj0KCQjwuuKXBhCRARIsAC</u>                                                     |
|                    | gM0iVpismAJN93CHA1sX6NuNeOKLXfQJjxHCOVH3QXjJ1iAC<br>g30KofoaAmFsEALw_wcB                                                 |
| WEB                | 4. https://www.meripustak.com&gclid=Cj0KCQjwuuKXBhCRARIsA                                                                |
| SOURCES            | C-gM0iVpismAJN93CHA1sX6NuNeOKLXfQJ                                                                                       |
|                    | jxHCOVH3QXjJ1iACq30KofoaAmFsEALw_wcB                                                                                     |
|                    | 5. https://www.amazon.in/Design-Wastewater-Treatment-Systems-CV-                                                         |
|                    | 424/dp/B00IG2PI6K/ref=asc_df_B00IG2PI6K/?tag=googleshopmob                                                               |
|                    | -21&linkCode=df0&hvadid=397013004690&hvpos=&hvnetw=                                                                      |
|                    | <u>g&amp;hvrand=4351305881865063672&amp;hvpone=&amp;hvptwo=&amp;hvqmt=</u>                                               |
|                    | <u>&amp;hvdev=m&amp;hvdvcmdl=&amp;hvlocint=&amp;hvlocphy=9061971&amp;hvtargid</u><br>=pla-890646066127&psc=1&ext_vrnc=hi |
|                    |                                                                                                                          |

# **COURSE OUTCOMES:**

# At the end of the course, the student will be able to:

| CO1    | Gained knowledge in solid waste management                                            | K1 |  |  |  |  |  |  |  |  |
|--------|---------------------------------------------------------------------------------------|----|--|--|--|--|--|--|--|--|
| CO2    | Equipped to take up related job by gaining industry exposure                          | K5 |  |  |  |  |  |  |  |  |
| CO3    | Develop entrepreneurial skills                                                        | K3 |  |  |  |  |  |  |  |  |
| CO4    | Will be able to analyze and manage the status of the solid wastes in the nearby areas | K4 |  |  |  |  |  |  |  |  |
| CO5    | Adequately sensitized in managing solid wastes in and around his/her locality         | K5 |  |  |  |  |  |  |  |  |
| K1 - R | K1 - Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate;              |    |  |  |  |  |  |  |  |  |

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | <b>PO7</b> | PO8 | PO9 | PO10 |
|-----|-----|-----|-----|-----|-----|-----|------------|-----|-----|------|
| CO1 | 3   | 2   | 3   | 3   | 3   | 2   | 3          | 2   | 3   | 2    |
| CO2 | 2   | 3   | 2   | 2   | 3   | 3   | 2          | 3   | 2   | 2    |
| CO3 | 2   | 2   | 2   | 2   | 2   | 3   | 3          | 3   | 3   | 2    |
| CO4 | 3   | 2   | 3   | 3   | 2   | 3   | 3          | 3   | 3   | 2    |
| CO5 | 2   | 2   | 2   | 2   | 3   | 3   | 2          | 2   | 2   | 2    |

|     | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 | PSO6 | PSO7 | PSO8 | PSO9 | PSO10 |
|-----|------|------|------|------|------|------|------|------|------|-------|
| CO1 | 3    | 2    | 3    | 3    | 3    | 2    | 3    | 2    | 3    | 2     |
| CO2 | 2    | 3    | 2    | 2    | 3    | 3    | 2    | 3    | 2    | 2     |
| CO3 | 2    | 2    | 2    | 2    | 2    | 3    | 3    | 3    | 3    | 2     |
| CO4 | 3    | 2    | 3    | 3    | 2    | 3    | 3    | 3    | 3    | 2     |
| CO5 | 2    | 2    | 2    | 2    | 3    | 3    | 2    | 2    | 2    | 2     |

#### Core VIII - NUCLEAR AND PARTICLE PHYSICS

#### **II YEAR - FOURTH SEMESTER**

| Subject<br>Code | Subject Name                    | Category | L | Т | Р | Credits | Inst.<br>Hours | Marks |
|-----------------|---------------------------------|----------|---|---|---|---------|----------------|-------|
|                 | NUCLEAR AND PARTICLE<br>PHYSICS | Core     |   |   |   | 5       | 6              | 75    |

#### **Pre-Requisites**

Knowledge of basic structure of atom and nucleus.

#### **Learning Objectives**

- ▶ Introduces students to the different models of the nucleus in a chronological order
- Imparts an in-depth knowledge on the nuclear force, experiments to study it and the types of nuclear reactions and their principles
- > Provides students with details of nuclear decay with relevant theories
- Exposes students to the Standard Model of Elementary Particles and Higgs boson

#### **UNIT I: NUCLEAR MODELS**

Liquid drop model – Weizacker mass formula – Isobaric mass parabola –Mirror Pair - Bohr Wheeler theory of fission – shell model – spin-orbit coupling – magic numbers – angular momenta and parity of ground states – magnetic moment – Schmidt model – electric Quadrupole moment - Bohr and Mottelson collective model – rotational and vibrational bands.

#### UNIT II: NUCLEAR FORCES

Nucleon – nucleon interaction – Tensor forces – properties of nuclear forces – ground state of deuteron – Exchange Forces - Meson theory of nuclear forces – Yukawa potential – nucleon-nucleon scattering – effective range theory – spin dependence of nuclear forces - charge independence and charge symmetry – isospin formalism.

#### UNIT III: NUCLEAR REACTIONS

Kinds of nuclear reactions – Reaction kinematics – Q-value – Partial wave analysis of scattering and reaction cross section – scattering length – Compound nuclear reactions – Reciprocity theorem – Resonances – Breit Wigner one level formula – Direct reactions - Nuclear Chain reaction – four factor formula.

#### **UNIT IV: NUCLEAR DECAY**

Beta decay - Continuous Beta spectrum - Fermi theory of beta decay - Comparative Half-life -

Fermi Kurie Plot – mass of neutrino – allowed and forbidden decay — neutrino physics – Helicity - Parity violation - Gamma decay – multipole radiations – Angular Correlation - internal conversion – nuclear isomerism – angular momentum and parity selection rules.

#### **UNIT V: ELEMENTARY PARTICLES**

Classification of Elementary Particles – Types of Interaction and conservation laws – Families of elementary particles – Isospin – Quantum Numbers – Strangeness – Hypercharge and Quarks –SU (2) and SU (3) groups-Gell Mann matrices– Gell Mann Okuba Mass formula- Quark Model. Standard model of particle physics – Higgs boson.

#### TEXT BOOKS

- 1. D. C. Tayal Nuclear Physics Himalaya Publishing House (2011).
- 2. K. S. Krane Introductory Nuclear Physics John Wiley & Sons (2008).
- 3. R. Roy and P. Nigam Nuclear Physics New Age Publishers (1996).
- 4. S. B. Patel Nuclear Physics An introduction New Age International Pvt Ltd Publishers (2011).
- 5. S. Glasstone Source Book of Atomic Energy Van Nostrand Reinhold Inc.,U.S.- 3rd Revised edition (1968).

#### **REFERENCE BOOKS**

- 1. L. J. Tassie The Physics of elementary particles Prentice Hall Press (1973).
- 2. H. A. Enge Introduction to Nuclear Physics Addison Wesley, Publishing Company. Inc. Reading. New York, (1974).
- 3. Kaplan Nuclear Physics 1989 2nd Ed. Narosa (2002).
- 4. Bernard L Cohen Concepts of Nuclear Physics McGraw Hill Education (India) Private Limited; 1 edition (2001).
- 5. B.L. Cohen, 1971, Concepts of Nuclear Physics, TMCH, New Delhi.

#### WEB SOURCES

- 1. http://bubl.ac.uk/link/n/nuclearphysics.html
- 2. http://www.phys.unsw.edu.au/PHYS3050/pdf/Nuclear\_Models.pdf
- 3. http://www.scholarpedia .org/article/Nuclear\_Forces
- 4. https://www.nuclear-power.net/nuclear-power/nuclear-reactions/
- 5. http://labman.phys.utk.edu/phys222core/modules/m12/nuclear\_models.html
- 6. https://www.ndeed.org/EducationResources/HighSchool/Radiography/radioactivedec ay.html

#### **COURSE OUTCOMES:**

#### At the end of the course, the student will be able to:

|        | Gain knowledge about the concepts of helicity, parity, angular correlation and internal conversion.                                                             | K1, K5 |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
|        | Demonstrate knowledge of fundamental aspects of the structure of the nucleus, radioactive decay, nuclear reactions and the interaction of radiation and matter. | K2, K3 |
|        | Use the different nuclear models to explain different nuclear phenomena and the concept of resonances through Briet-Weigner single level formula                | К3     |
|        | Analyze data from nuclear scattering experiments to identify different properties of the nuclear force.                                                         | K3, K4 |
|        | Summarize and identify allowed and forbidden nuclear reactions based on conservation laws of the elementary particles.                                          | К5     |
| K1 - R | Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 – Evaluate                                                                                              | •      |

#### **MAPPING WITH PROGRAM OUTCOMES:**

|     | <b>PO1</b> | PO2 | PO3 | PO4 | PO5 | PO6 | <b>PO7</b> | PO8 | PO9 | <b>PO10</b> |
|-----|------------|-----|-----|-----|-----|-----|------------|-----|-----|-------------|
| CO1 | 3          | 3   | 2   | 2   | 2   | 2   | 2          | 2   | 2   | 2           |
| CO2 | 3          | 3   | 2   | 2   | 1   | 2   | 1          | 2   | 2   | 2           |
| CO3 | 3          | 3   | 1   | 2   | 1   | 2   | 1          | 1   | 2   | 2           |
| CO4 | 3          | 3   | 2   | 3   | 2   | 3   | 2          | 2   | 3   | 3           |
| CO5 | 3          | 3   | 2   | 3   | 2   | 3   | 2          | 3   | 3   | 3           |

|     | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 | PSO6 | PSO7 | PSO8 | PSO9 | PSO10 |
|-----|------|------|------|------|------|------|------|------|------|-------|
| CO1 | 3    | 3    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2     |
| CO2 | 3    | 3    | 2    | 2    | 1    | 2    | 1    | 2    | 2    | 2     |
| CO3 | 3    | 3    | 1    | 2    | 1    | 2    | 1    | 1    | 2    | 2     |
| CO4 | 3    | 3    | 2    | 3    | 2    | 3    | 2    | 2    | 3    | 3     |
| CO5 | 3    | 3    | 2    | 3    | 2    | 3    | 2    | 3    | 3    | 3     |

#### CORE Practical – IV : ADVANCED PHYSICS EXPERIMENTS – II AND NUMERICAL METHODS IN C++

II YEAR – FOURTH SEMESTER

| Subject<br>Code | Subject Name                                                      | Category | L | Т | Р | Credits | Inst. Hours | Marks |
|-----------------|-------------------------------------------------------------------|----------|---|---|---|---------|-------------|-------|
|                 | Advanced Physics Experiments – II<br>and Numerical Methods in C++ | Core     |   |   |   | 4       | 6           | 50    |

| Pre-Requisites                                                                                 |  |  |  |  |  |  |
|------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Basic knowledge in principles of Physics, Circuit theory, Digital electronics, Scilab software |  |  |  |  |  |  |
| Basic knowledge of Numerical Methods and Programming skills                                    |  |  |  |  |  |  |
| Learning Objectives                                                                            |  |  |  |  |  |  |
| > To apply theoretical knowledge through hands-on experiments in order to analyze and          |  |  |  |  |  |  |
| understand the characteristics and behaviors of various physical and electronic systems,       |  |  |  |  |  |  |
| while developing practical skills in measurement, data analysis, and circuit design.           |  |  |  |  |  |  |
| > To familiarize the students with numerical methods used in problem-solving by writing        |  |  |  |  |  |  |
| programs using the high level language C++                                                     |  |  |  |  |  |  |

#### Advanced Physics Experiments – II and Numerical Methods in C++

#### Section A: Advanced Physics Experiments – II

#### (Any 6 Experiments)

1. Investigate the equilibrium points of the logistic map equation  $X_{n+1} = aX_n (1 - X_n)$  for various parameter values and initial conditions:

a) Determine the equilibrium points for 'a' ranging from 0.5 to 2.5 with a step size of 0.1 considering  $x_0=0.1$ .

b) Explore the behavior of the logistic map for 'a' values between 3.5 and 4.0 with a step size of 0.05 for  $x_0=0.2$ .

c) Analyze the dynamics near the period-doubling bifurcation point at a $\approx$ 3.828, considering  $x_0=0.3$ .

d) Plot  $x_n$  versus n for each scenario and generate bifurcation diagrams to visualize the system's behavior.

- 2. Determination of resistivity of a semiconductor by Four Probe Method.
- 3. Examine the input-output characteristics of an ADC or DAC IC (0800 series). The characteristics may include parameters such as linearity, accuracy, resolution and dynamic range.
- 4. Photo Conductivity Experiment:
  - a) To plot the current-voltage characteristics of a CdS Photo Resistor (LDR) at constant irradiance.
  - b) To measure the Photo current as a function of irradiance at constant voltage
- 5. Determination of the distance between two tracks of a CD and a DVD using a Solid state laser
- 6. Verification of Thevenin's and Max power theorems
- 7. Study the Characteristics of a Load cell
- 8. Design of a Serial Shift Registers using necessary Flip-Flop ICs
- 9. Design of Encoder and Decoder Circuits using necessary ICs
- 10. Study of a quartz crystal (1 MHz) and construction of a Pierce crystal Oscillator using digital inverters
- 11. UV spectral data analysis for the given spectrum
- 12. Simulation of satellite orbit around the earth using the universal law of gravitation in Scilab

#### Section – B: Numerical Methods in C++ (Any SIX programs with Algorithm and Flow chart)

- 1 Algebraic and Transcendental equation.
- a) Solution of the given equations using Newton Raphson Method manual calculation.
- b) C++ program to find the solution using N-R method and verification.
- 2. Algebraic and Transcendental equations.
- a) Solution of the given equations using Bisection Method manual calculation.
- b) C++ program to find the solution using Bisection method and verification.
- 3. Curve Fitting Linear Fit
- a) Principle of least square and fitting a straight line.
- b) C++ program to fit a straight line using the given data related with any physics experiment.
- 4. Curve Fitting Non Linear Fit
  - a) Principle of fitting a second degree polynomial using method of least square
  - b) C++ program to fit a polynomial using the given data related with any physics experiment.
- 5. Interpolation
  - a) Derive Lagrangian interpolation formula.

b) C++ program to interpolate using the given data related with any physics experiment by Lagrangian Method.

- 6. Solution of simultaneous equations -Gauss Elimination method.
  - a) Procedure to solve Simultaneous equations using Gauss Elimination (GE) Method
  - b) C++ program for solving unknown branch currents in Wheatstone's bridge using GE method.
- 7. Numerical solution of ordinary Differential Equations.
  - a) Derivation of Exponential law of Radioactive decay.
  - b) RK 4th order method of solving a given 1st order differential equation.
  - c) C++ program using RK method to solve radioactive problem Compare output with the analytical result.
- 8. Area under the Curve Numerical integration
- a) Derivation of Trapezoidal and Simpson's rule
- b) C++ programs for Trapezoidal and Simpson 1/3 rule
- c) Comparison of the program output with direct integration.
- 9. Random Number Generation and Montecarlo Method
  - a) Generate and scale the random numbers for the desired range using the C++ library functions.
  - b) Evaluate the given integral using Montecarlo method.
- 10. Matrix Multiplication
- a) Multiplication of two given matrices
- b) Rotation matrix definition.
- c) C++ program to rotate the given 2D- object about the origin using rotation matrix through the given angle.
- 11. Inverse of a Matrix
  - a) Procedure to determine the Inverse of a Matrix using Gauss elimination Method.
  - b) C++ Program to find the Inverse of a Matrix using Gauss Elimination Method.
- 12. Numerical Differentiation
- a) Numerical differentiation related to any physical problem
- b) Derivation of Newton's law of cooling -equation
- c) C++ program to verify the Newton's law of cooling from the given experimental data.

#### Course Outcomes: Section –A

| CO1 | Students will be able to evaluate the efficiency and performance of solar cells by analyzing their spectral response to different wavelengths of light.                       |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CO2 | Students will understand the functional characteristics of ADCs, including linearity, accuracy, resolution, and dynamic range, through practical examination of the ADC 0804. |
| CO3 | Students will be able to characterize the current-voltage relationship of a CdS photoresistor under constant irradiance conditions.                                           |
| CO4 | Students will be able to determine and analyze the temperature coefficient of resistance for a thermistor using the Carey Foster Bridge method.                               |
| CO5 | Students will be able to measure and interpret the spacing between tracks on optical discs using diffraction patterns generated by a solid-state laser.                       |

| CO6        | Students will gain practical experience in verifying and applying Norton's,         |
|------------|-------------------------------------------------------------------------------------|
|            | Thevenin's, and Maximum Power Transfer theorems in electrical circuits.             |
| CO7        | Students will understand and evaluate the performance characteristics of load       |
|            | cells, including their response to varying loads.                                   |
| <b>CO8</b> | Students will acquire the ability to design, implement, and test serial shift       |
|            | registers using flip-flops and integrated circuits.                                 |
| CO9        | Students will learn to design and construct encoder and decoder circuits,           |
|            | understanding their principles and applications in digital systems.                 |
| CO10       | Students will be able to analyze the properties of a quartz crystal and construct a |
|            | Pierce crystal oscillator, understanding its operation and applications.            |
| CO11       | Students will develop skills in using simulation software to model and analyze      |
|            | satellite orbits based on the universal law of gravitation.                         |

# Course Outcomes: Section -B

| CO1  | Students will be able to apply the Newton Raphson method manually to solve                                                                          |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
|      | given equations and implement it in C++ for verification.                                                                                           |
| CO2  | Students will demonstrate proficiency in applying the Bisection method manually                                                                     |
|      | and implementing it in C++ to find solutions, ensuring accuracy through                                                                             |
|      | verification.                                                                                                                                       |
| CO3  | Learners will understand the principle of least squares and successfully fit a                                                                      |
|      | straight line to given data using C++, applying it to physics experiments.                                                                          |
| CO4  | Students will grasp the principle of least squares for nonlinear fits and implement                                                                 |
|      | it in C++ to fit a polynomial to experimental data, specifically exploring physics-                                                                 |
|      | related datasets.                                                                                                                                   |
| CO5  | Students will derive the Lagrangian interpolation formula and apply it in C++ to                                                                    |
|      | interpolate data from physics experiments, gaining practical experience in                                                                          |
|      | numerical methods.                                                                                                                                  |
| CO6  | Students will comprehend the Gauss Elimination method for solving simultaneous                                                                      |
|      | equations and implement it in C++ to find unknown branch currents in a                                                                              |
|      | Wheatstone bridge, linking numerical methods to circuit analysis.                                                                                   |
| CO7  | Learners will derive the exponential law of radioactive decay and employ the RK                                                                     |
|      | 4th order method in C++ to solve differential equations, comparing results to                                                                       |
|      | analytical solutions in a radioactive decay scenario.                                                                                               |
| CO8  | Students will understand and derive the Trapezoidal and Simpson's rules for                                                                         |
|      | numerical integration and implement corresponding C++ programs, validating                                                                          |
|      | their accuracy through comparison with direct integration methods.                                                                                  |
| CO9  | Students will be proficient in generating and scaling random numbers in C++                                                                         |
|      | using library functions and applying the Monte Carlo method to evaluate                                                                             |
| 0010 | integrals, integrating randomness into numerical methods.                                                                                           |
| CO10 | Students will demonstrate competence in matrix multiplication, comprehend                                                                           |
|      | rotation matrix concepts, and implement a C++ program to rotate 2D objects                                                                          |
|      | about the origin, emphasizing practical applications in computer graphics or                                                                        |
| CO11 | physics simulations.                                                                                                                                |
| COII | Students will apply numerical differentiation to solve physical problems, derive                                                                    |
|      | Newton's law of cooling equation, and validate it through a C++ program analyzing experimental data, connecting mathematical modeling to real-world |
|      | phenomena.                                                                                                                                          |
|      |                                                                                                                                                     |

#### MAPPING WITH PROGRAM OUTCOMES:

|            | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 |
|------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|
| CO1        | 2   | 2   | 2   | 3   | 2   | 2   | 2   | 1   | 2   | 3    |
| CO2        | 2   | 2   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3    |
| CO3        | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3    |
| CO4        | 3   | 2   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3    |
| CO5        | 3   | 3   | 3   | 3   | 3   | 3   | 2   | 2   | 2   | 2    |
| CO6        | 2   | 2   | 2   | 3   | 3   | 1   | 1   | 1   | 3   | 3    |
| <b>CO7</b> | 2   | 2   | 3   | 3   | 3   | 1   | 1   | 1   | 3   | 3    |
| CO8        | 3   | 3   | 3   | 3   | 3   | 3   | 2   | 2   | 3   | 3    |
| CO9        | 3   | 3   | 3   | 3   | 3   | 3   | 1   | 1   | 1   | 1    |
| CO10       | 3   | 3   | 3   | 3   | 3   | 3   | 1   | 1   | 1   | 1    |
| CO11       | 2   | 2   | 2   | 3   | 3   | 1   | 1   | 1   | 3   | 3    |

|      | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 | PSO6 | PSO7 | PSO8 | PSO9 | PSO10 |
|------|------|------|------|------|------|------|------|------|------|-------|
|      |      |      |      |      |      |      |      |      |      |       |
| CO1  | 2    | 2    | 2    | 3    | 2    | 2    | 2    | 1    | 2    | 3     |
| CO2  | 2    | 2    | 3    | 3    | 3    | 3    | 3    | 3    | 3    | 3     |
| CO3  | 3    | 3    | 3    | 3    | 3    | 3    | 3    | 3    | 3    | 3     |
| CO4  | 3    | 2    | 3    | 3    | 3    | 3    | 3    | 3    | 3    | 3     |
| CO5  | 3    | 3    | 3    | 3    | 3    | 3    | 2    | 2    | 2    | 2     |
| CO6  | 2    | 2    | 2    | 3    | 3    | 1    | 1    | 1    | 3    | 3     |
| CO7  | 2    | 2    | 3    | 3    | 3    | 1    | 1    | 1    | 3    | 3     |
| CO8  | 3    | 3    | 3    | 3    | 3    | 3    | 2    | 2    | 3    | 3     |
| CO9  | 3    | 3    | 3    | 3    | 3    | 3    | 1    | 1    | 1    | 1     |
| CO10 | 3    | 3    | 3    | 3    | 3    | 3    | 1    | 1    | 1    | 1     |
| CO11 | 2    | 2    | 2    | 3    | 3    | 1    | 1    | 1    | 3    | 3     |

# SEC – III. SOLAR ENERGY UTILIZATION

# II YEAR – FOURTH SEMESTER

| Subject<br>Code | Subject Name             | Category | L | Т | Р | Credits | Inst. Hours | Marks |
|-----------------|--------------------------|----------|---|---|---|---------|-------------|-------|
|                 | SOLAR ENERGY UTILIZATION | SEC      |   |   |   | 2       | 5           | 75    |

| Due Deguisites                                                                         |  |  |  |  |  |  |
|----------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Pre-Requisites                                                                         |  |  |  |  |  |  |
| Basic knowledge of heat energy, way of transfer of heat, solar energy, materials types |  |  |  |  |  |  |
| Learning Objectives                                                                    |  |  |  |  |  |  |
| To impart fundamental aspects of solar energy utilization.                             |  |  |  |  |  |  |
| To give adequate exposure to solar energy related industries                           |  |  |  |  |  |  |
| > To harness entrepreneurship skills                                                   |  |  |  |  |  |  |

- To harness entrepreneurship skills
   To understand the different types of solar cells and channelizing them to the different sectors of society
- > To develop an industrialist mindset by utilizing renewable source of energy
- $\triangleright$

| UNITS                        | Course Details                                                       |  |  |  |  |
|------------------------------|----------------------------------------------------------------------|--|--|--|--|
| UNIT I:                      | Introduction to sun and solar energy – Conduction, Convection and    |  |  |  |  |
| HEAT TRANSFER &              | Radiation – Solar Radiation at the earth's surface – Earth radiation |  |  |  |  |
| RADIATION ANALYSIS           | budget- Determination of solar time – Solar energy measuring         |  |  |  |  |
|                              | methods and instruments- Analysis of Solar insolation .              |  |  |  |  |
|                              | Physical principles of conversion of solar radiation into heat flat  |  |  |  |  |
| UNIT II:<br>SOLAR COLLECTORS | plate collectors - General characteristics – Focusing collector      |  |  |  |  |
| SOLAR COLLECTORS             | systems – Thermal performance evaluation of optical loss.            |  |  |  |  |
| UNIT III:                    | Types of solar water heater - Solar heating system – Collectors and  |  |  |  |  |
| SOLAR HEATERS                | storage tanks – Solar ponds – Solar cooling systems – Design and     |  |  |  |  |
|                              | cost estimation of a solar thermal system (Load analysis, system     |  |  |  |  |
|                              | design, component list, price break down)                            |  |  |  |  |
|                              | Photo Voltaic principles – Types of solar cells – Crystalline        |  |  |  |  |
| UNIT IV:                     | silicon/amorphous silicon and Thermo - electric conversion -         |  |  |  |  |
| SOLAR ENERGY                 | process flow of silicon solar cells- different approaches on the     |  |  |  |  |
| CONVERSION                   | process- texturization, diffusion, Antireflective coatings,          |  |  |  |  |
|                              | metallization-Emerging solar cell technologies.                      |  |  |  |  |

|                             | Use of nanostructures and nanomaterial in fuel cell technology -  |
|-----------------------------|-------------------------------------------------------------------|
| UNIT V:<br>NANOMATERIALS IN | high and low temperature fuel cells, cathode and anode reactions, |
| FUEL CELL                   | fuel cell catalysts, electrolytes, ceramic catalysts. Use of Nano |
| APPLICATIONS                | technology in hydrogen production and storage.                    |
| ALICATIONS                  | Industrial visit – data collection and analysis - presentation    |

| TEXT           | 1. Solar energy utilization -G.D. Rai –Khanna publishers – Delhi 1987.                      |
|----------------|---------------------------------------------------------------------------------------------|
| BOOKS          | 2. Carbon Nano forms and Applications", Maheshwar Sharon, Madhuri Sharon,                   |
|                | Mc Graw-Hill, 2010.                                                                         |
|                | 3. Solar Energy Engineering: Processes and Systems", Soteris A. Kalogirou                   |
|                | Academic Press, London, 2009                                                                |
|                | 4. Solar Energy – Fundamentals Design, Modelling and applications, Tiwari                   |
|                | Narosa Publishing House, New Delhi, 2002                                                    |
|                | 5. Solar Energy, Sukhatme S.P. Tata McGraw Hill Publishing Company Ltd.,                    |
|                | New Delhi, 1997.                                                                            |
|                |                                                                                             |
| REFERENCE      | 1. Energy – An Introduction to Physics – R.H.Romer, W.H.Freeman.(1976)                      |
| BOOKS          | 2. Solar energy thermal processes – John A.Drife and William. (1974)                        |
|                | 3. John W. Twidell& Anthony D.Weir, 'Renewable Energy Resources,2005                        |
|                | 4. John A. Duffie, William A. Beckman, Solar Energy: Thermal Processes, 4th                 |
|                | Edition, john Wiley and Sons, 2013                                                          |
|                |                                                                                             |
|                | 5. Duffie, J.A., Beckman, W.A., "Solar Energy Thermal Process", John Wiley                  |
|                | and Sons,2007.                                                                              |
|                | 6. Solar Domestic Water Heating "The Earthscan Expert Handbook for                          |
|                | Planning, Design and Installation" published by Earthscan Ltd.                              |
|                | ISBN: 978-1-84407-736-6                                                                     |
|                | 7. Solar Water and Pool Heating Manual: Design and Installation & Repair and                |
|                | Maintenance, FSEC-IN-24.                                                                    |
|                | Free download at: [PDF] Solar Water and Pool Heating Manual File Format:                    |
|                | PDF/Adobe Acrobat - Quick View Pool Heating Manual. Design and                              |
|                | Installation. &. Repair and Maintenance. Florida Solar Energy Center.                       |
|                | Cocoa, Florida                                                                              |
|                |                                                                                             |
| WEB<br>COURCES | 1. <u>https://pdfs.semanticscholar.org/63a5/a69421b69d2ce9f359bbfc86c63556</u>              |
| SOURCES        | <u>f9a4fb</u><br>2. https://books.google.vg/books?id=l-                                     |
|                | 2. <u>https://books.google.vg/books?id=i-</u><br>XHcwZo9XwC&sitesec=buy&source=gbs_vpt_read |
|                |                                                                                             |
|                |                                                                                             |
|                | 4. <u>www.freevideolectures.com</u>                                                         |
|                | 5. <u>http://www.e-booksdirectory.com</u>                                                   |

#### **COURSE OUTCOMES:**

#### At the end of the course, the student will be able to:

| CO1        | Gained knowledge in fundamental aspects of solar energy utilization       | K1     |
|------------|---------------------------------------------------------------------------|--------|
| CO2        | Equipped to take up related job by gaining industry exposure              | К3     |
| CO3        | Develop entrepreneurial skills                                            | К5     |
| <b>CO4</b> | Skilled to approach the needy society with different types of solar cells | K4     |
| CO5        | Gained industrialist mindset by utilizing renewable source of energy      | K2, K3 |

#### MAPPING WITH PROGRAM OUTCOMES:

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | <b>PO7</b> | <b>PO8</b> | PO9 | PO10 |
|-----|-----|-----|-----|-----|-----|-----|------------|------------|-----|------|
| CO1 | 3   | 2   | 3   | 3   | 3   | 2   | 2          | 2          | 3   | 2    |
| CO2 | 2   | 3   | 2   | 2   | 3   | 3   | 2          | 3          | 2   | 2    |
| CO3 | 2   | 3   | 2   | 2   | 2   | 2   | 3          | 3          | 3   | 2    |
| CO4 | 2   | 2   | 2   | 3   | 2   | 3   | 2          | 3          | 3   | 2    |
| CO5 | 2   | 2   | 3   | 2   | 3   | 3   | 3          | 3          | 3   | 3    |

|     | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 | PSO6 | PSO7 | PSO8 | PSO9 | PSO10 |
|-----|------|------|------|------|------|------|------|------|------|-------|
| CO1 | 3    | 2    | 3    | 3    | 3    | 2    | 2    | 2    | 3    | 2     |
| CO2 | 2    | 3    | 2    | 2    | 3    | 3    | 2    | 3    | 2    | 2     |
| CO3 | 2    | 3    | 2    | 2    | 2    | 2    | 3    | 3    | 3    | 2     |
| CO4 | 2    | 2    | 2    | 3    | 2    | 3    | 2    | 3    | 3    | 2     |
| CO5 | 2    | 2    | 3    | 2    | 3    | 3    | 3    | 3    | 3    | 3     |

# **ELECTIVE SUBJECTS**

| Semester | Туре                 | Course Title                                    |  |  |  |  |
|----------|----------------------|-------------------------------------------------|--|--|--|--|
|          | Elective - I         | a) Energy Physics                               |  |  |  |  |
|          | (Discipline Centric) | b) Astro Physics                                |  |  |  |  |
|          | (Discipline Centric) | c) Plasma Physics                               |  |  |  |  |
| Ι        |                      |                                                 |  |  |  |  |
|          | Elective - II        | a) Linear and Digital ICs and Applications      |  |  |  |  |
|          | (Generic)            | b) Digital Communication                        |  |  |  |  |
|          | (Ocheric)            | c) Communication Electronics                    |  |  |  |  |
|          |                      |                                                 |  |  |  |  |
|          | Elective - III       | a) Advanced Optics                              |  |  |  |  |
|          | (Discipline Centric) | b) Non Linear Dynamics                          |  |  |  |  |
|          | (Discipline Centric) | c) Physics of Nano Science and Technology       |  |  |  |  |
| II       |                      |                                                 |  |  |  |  |
| 11       | Elective - IV        | a) Microprocessor 8085 and Microcontroller 8051 |  |  |  |  |
|          | (Generic)            | b) Material Science                             |  |  |  |  |
|          | (Ocheric)            | c) Characterization of Materials                |  |  |  |  |
|          |                      |                                                 |  |  |  |  |
|          |                      | a) Spectroscopy                                 |  |  |  |  |
| III      | Elective - V         | b) Crystal Growth and Thin Films                |  |  |  |  |
| 111      | (Discipline Centric) | c) General Relativity and Cosmology             |  |  |  |  |
|          |                      |                                                 |  |  |  |  |
|          | Elective - VI        | a) Electro Magnetic Theory                      |  |  |  |  |
| IV       | (Generic)            | b) Quantum Field Theory                         |  |  |  |  |
|          | ()                   | c) Advanced Mathematical Physics                |  |  |  |  |

## LIST OF ELECTIVE SUBJECTS (Choose any one subject from each Elective)

# **Elective 1-A. ENERGY PHYSICS**

# I YEAR - I SEMESTER

| Subject<br>Code | Subject Name   |          | L | Т | Р | Credits | Inst. Hours | Marks |
|-----------------|----------------|----------|---|---|---|---------|-------------|-------|
|                 | ENERGY PHYSICS | Elective |   |   |   | 3       | 5           | 75    |

|              | Pre-Requisites                                                                   |  |  |  |  |  |  |  |
|--------------|----------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| Knowledge    | Knowledge of conventional energy resources                                       |  |  |  |  |  |  |  |
|              | Learning Objectives                                                              |  |  |  |  |  |  |  |
| $\checkmark$ | To learn about various renewable energy sources.                                 |  |  |  |  |  |  |  |
| $\checkmark$ | To know the ways of effectively utilizing the oceanic energy.                    |  |  |  |  |  |  |  |
| $\checkmark$ | To study the method of harnessing wind energy and its advantages.                |  |  |  |  |  |  |  |
| $\checkmark$ | To learn the techniques useful for the conversion of biomass into useful energy. |  |  |  |  |  |  |  |
| $\checkmark$ | To know about utilization of solar energy                                        |  |  |  |  |  |  |  |

| UNITS                               | Course Details                                                                                                                                                                                                                                                                                 |
|-------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| UNIT I:                             | A brief survey of conventional and non-conventional energy sources and                                                                                                                                                                                                                         |
| INTRODUCTION                        | their availability-present and future needs prospects of Renewable energy                                                                                                                                                                                                                      |
| TO ENERGY                           | sources- Energy from other sources- chemical energy-Nuclear energy-                                                                                                                                                                                                                            |
| SOURCES                             | Energy storage and distribution.                                                                                                                                                                                                                                                               |
| UNIT II:                            | Energy utilization-Energy from tides-Basic principle of tidal power-                                                                                                                                                                                                                           |
| <b>ENERGY FROM</b>                  | utilization of tidal energy - Principle of ocean thermal energy conversion                                                                                                                                                                                                                     |
| THE OCEANS                          | systems.                                                                                                                                                                                                                                                                                       |
| UNIT III:<br>WIND ENERGY<br>SOURCES | Basic principles of wind energy conversion–power in the wind–forces in the Blades– Wind energy conversion–Advantages and disadvantages of wind energy conversion systems (WECS) - Energy storage–Applications of wind energy.                                                                  |
| UNIT IV:<br>ENERGY FROM<br>BIOMASS  | Biomass conversion Technologies– wet and dry process– Photosynthesis<br>Biogas Generation: Introduction–basic process: Aerobic and anaerobic<br>digestion – Advantages of anaerobic digestion–factors affecting bio<br>digestion and generation of gas- bio gas from waste fuel– properties of |
|                                     | biogas-utilization of biogas.                                                                                                                                                                                                                                                                  |

|              | Solar radiation and its measurements-solar cells: Solar cells for direct       |
|--------------|--------------------------------------------------------------------------------|
| UNIT V:      | conversion of solar energy to electric powers-solar cell parameter-solar cell  |
| SOLAR ENERGY | electrical characteristics- Efficiency-solar water Heater -solar distillation- |
| SOURCES      | solar cooking–solar greenhouse – Solar pond and its applications.              |
|              |                                                                                |

|           | 1.G.D. Rai, 1996, Non – convention sources of, 4th edition, Khanna              |  |  |  |  |  |  |  |
|-----------|---------------------------------------------------------------------------------|--|--|--|--|--|--|--|
|           | publishers, New Delhi.                                                          |  |  |  |  |  |  |  |
|           | 2.S. Rao and Dr. ParuLekar, Energy technology.                                  |  |  |  |  |  |  |  |
|           | 3.M.P. Agarwal, Solar Energy, S. Chand and Co., New Delhi (1983).               |  |  |  |  |  |  |  |
| TEXT      | 4. Solar energy, principles of thermal collection and storage by                |  |  |  |  |  |  |  |
| BOOKS     | S.P.Sukhatme, 2 <sup>nd</sup> edition, Tata McGraw-Hill Publishing Co. Lt., New |  |  |  |  |  |  |  |
|           | Delhi (1997).                                                                   |  |  |  |  |  |  |  |
|           | 5. Energy Technology by S.Rao and Dr. Parulekar.                                |  |  |  |  |  |  |  |
|           | 1. Renewable energy resources, John Twidell and Tonyweir, Taylor and            |  |  |  |  |  |  |  |
|           | Francis group, London and New York.                                             |  |  |  |  |  |  |  |
|           | 2. Applied solar energy, A.B.MeinelandA.P.Meinal                                |  |  |  |  |  |  |  |
| REFERENCE | 3. John Twidell and Tony Weir, Renewable energy resources, Taylor and           |  |  |  |  |  |  |  |
| . –       | Francis group, London and New York.                                             |  |  |  |  |  |  |  |
| BOOKS     | 4. Renewal Energy Technologies: A Practical Guide for Beginners C.S.            |  |  |  |  |  |  |  |
|           | Solanki-PHI Learning                                                            |  |  |  |  |  |  |  |
|           | 5. Introduction to Non-Conventional Energy Resources -Raja et. al., Sci.        |  |  |  |  |  |  |  |
|           | Tech Publications                                                               |  |  |  |  |  |  |  |
|           | 1.https://www.open.edu/openlearn/ocw/mod/oucontent/view.php?id=2411&print       |  |  |  |  |  |  |  |
|           | <u>able=1</u>                                                                   |  |  |  |  |  |  |  |
| WEB       | 2. https://www.nationalgeographic.org/encyclopedia/tidal-energy/                |  |  |  |  |  |  |  |
| SOURCES   | 3. https://www.ge.com/renewableenergy/wind-energy/what-is-wind-energy           |  |  |  |  |  |  |  |
|           | 4. https://www.reenergyholdings.com/renewable-energy/what-is-biomass/           |  |  |  |  |  |  |  |
|           | 5. <u>https://www.acciona.com/renewable-energy/solar-energy/</u>                |  |  |  |  |  |  |  |

#### **COURSE OUTCOMES:**

#### At the end of the course, the student will be able to:

| CO1                                                                      | To identify various forms of renewable and non-renewable energy sources                           | K1    |  |  |  |  |  |
|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|-------|--|--|--|--|--|
|                                                                          | Understand the principle of utilizing the oceanic energy and apply it for practical applications. | K2    |  |  |  |  |  |
| CO3                                                                      | Discuss the working of a windmill and analyze the advantages of wind energy.                      | K3    |  |  |  |  |  |
| CO4                                                                      | Distinguish aerobic digestion process from anaerobic digestion.                                   | K3,K4 |  |  |  |  |  |
| CO5                                                                      | Understand the components of solar radiation, their measurement and apply them                    |       |  |  |  |  |  |
|                                                                          | to utilize solar energy.                                                                          | K2,K5 |  |  |  |  |  |
| K1 - Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate; |                                                                                                   |       |  |  |  |  |  |

#### MAPPING WITH PROGRAM OUTCOMES:

|            | <b>PO1</b> | PO2 | PO3 | PO4 | PO5 | PO6 | <b>PO7</b> | <b>PO8</b> | PO9 | PO10 |
|------------|------------|-----|-----|-----|-----|-----|------------|------------|-----|------|
| CO1        | 2          | 3   | 3   | 3   | 2   | 2   | 2          | 3          | 3   | 3    |
| CO2        | 2          | 3   | 3   | 3   | 2   | 2   | 2          | 3          | 3   | 3    |
| CO3        | 2          | 3   | 3   | 3   | 2   | 2   | 2          | 3          | 3   | 3    |
| <b>CO4</b> | 2          | 3   | 3   | 3   | 2   | 2   | 2          | 3          | 3   | 3    |
| CO5        | 2          | 3   | 3   | 3   | 2   | 2   | 2          | 3          | 3   | 3    |

|     | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 | PSO6 | PSO7 | PSO8 | PSO9 | PSO10 |
|-----|------|------|------|------|------|------|------|------|------|-------|
| CO1 | 2    | 3    | 3    | 3    | 2    | 2    | 2    | 3    | 3    | 3     |
| CO2 | 2    | 3    | 3    | 3    | 2    | 2    | 2    | 3    | 3    | 3     |
| CO3 | 2    | 3    | 3    | 3    | 2    | 2    | 2    | 3    | 3    | 3     |
| CO4 | 2    | 3    | 3    | 3    | 2    | 2    | 2    | 3    | 3    | 3     |
| CO5 | 2    | 3    | 3    | 3    | 2    | 2    | 2    | 3    | 3    | 3     |

#### **Elective 1-B. ASTRO PHYSICS**

#### I YEAR – I SEMESTER

| Subject<br>Code | Subject Name  | Category | L | Т | Р | Credits | Inst. Hours | Marks |
|-----------------|---------------|----------|---|---|---|---------|-------------|-------|
|                 | ASTRO PHYSICS | Elective |   |   |   | 3       | 5           | 75    |

#### **Pre-Requisites**

undamental knowledge of electromagnetic spectrum in observational astronomy, About the universe and galaxies.

#### Learning Objectives

- > To impart knowledge on the physical universe and its evolution
- To make the sudent to understand fundamental principles and techniques of astronomy and astrophysics
- > To make the student to study electromagnetic radiation from stars, atomic spectra and
- classificition of stars
- > To provide information about the properties and the evolution of stars
- > To render information about astronomical instrumentation

| UNITS                                 | Course Details                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|---------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| UNIT I:<br>OBSERVATIONAL<br>ASTRONOMY | The electromagnetic spectrum; geometrical optics (ray diagrams, focal<br>length, magnification etc); diffraction (resolving power, Airy disc,<br>diffraction limit etc); telescopes (reflecting, refracting, multiwavelength)                                                                                                                                                                                                                                                                                                                                                                                     |
| UNIT II:<br>PROPERTIES OF<br>STARS    | Brightness (luminosities, fluxes and magnitudes); colours (black body<br>radiation, the Planck, Stefan-Boltzmann and Wien's laws, effective<br>temperature, interstellar reddening); spectral types; spectral lines (Bohr<br>model, Lyman & Balmer series etc, Doppler effect); Hertzprung Russell<br>diagram; the main sequence (stellar masses ,binary systems, Kepler's<br>laws, mass-luminosity relations); distances to stars (parallax, standard<br>candles, P-L relationships, ms-fitting etc); positions of stars (celestial<br>sphere, coordinate systems, proper motions, sidereal and universal time). |

| UNIT III:<br>THE LIFE AND<br>DEATH OF STARS | Energy source (nuclear fusion, p-pchain, triple-alpha, CNO cycle, lifetime of the Sun); solar neutrinos; basic stellar structure hydro static equilibrium, equation of state);evolution beyond the main sequence; formation of the heavy elements; supernovae; stellar remnants(white dwarfs, neutron stars, black holes, degeneracy pressure, Swarszchild radius, escape velocities).                                                                                             |
|---------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| UNIT IV:<br>GALAXIES                        | Constituents of galaxies; stellar populations; the interstellar medium; HII regions; 21cm line; spirals and ellipticals; galactic dynamics; galaxy rotation curves and dark matter; active galaxies and quasars.                                                                                                                                                                                                                                                                   |
| UNIT V:<br>COSMOLOGY                        | Galaxies and the expanding Universe; Hubble's Law; the age of the<br>Universe; the Big Bang; cosmic microwave background (black body<br>radiation);big bang nucleosynthesis (cosmic abundances, binding<br>energies, matter & radiation); introductory cosmology (the cosmological<br>principle, homogeneity and isotropy, Olber's paradox); cosmological<br>models (critical density, geometry of space, the fate of the Universe);<br>dark energy and the accelerating Universe. |

| TEXT BOOKS         | <ul> <li>1.Zeilik&amp; Gregory, Introductory Astronomy &amp; Astrophysics,4<sup>th</sup>edi<br/>(Saunders College Publishing)</li> <li>2.Morison,I.,IntroductiontoAstronomyand Cosmology, (Wiley)</li> <li>3.Kutner,M.L., Astronomy: A Physical Perspective (Cambridge<br/>University Press)</li> <li>4. Green,S.F.&amp; Jones,M.H.,An Introduction to the Sunand Stars (<br/>Cambridge University Press)</li> </ul>              |  |  |  |  |  |  |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| REFERENCE<br>BOOKS | <ul> <li>5.Jones,M.H.&amp;Lambourne,R.J.A.,An Introduction to Galaxies &amp;<br/>Cosmology (Cambridge UniversityPress)</li> <li>6.Carroll,B.W.&amp;Ostlie,D.A.,An Introduction to ModernAstrophysics<br/>(Pearson)</li> <li>7.Shu,F.H.,The Physical Universe, An Introduction to Astronomy,<br/>(University Science Books)</li> <li>8.Motz,L.&amp;Duveen,A.,The Essentials of Astronomy,<br/>(ColombiaUniversityPress)</li> </ul> |  |  |  |  |  |  |
| WEB SOURCES        | 1. <u>https://www.coursera.org/courses?query=astrophysics</u> 2. <u>https://www.space.com</u> 3. <u>https://www.britanica.com</u> 4. <u>https://science.nasa.gov</u> 5. <u>https://merriam-webster.com</u>                                                                                                                                                                                                                        |  |  |  |  |  |  |

# **<u>COURSE OUTCOMES:</u>** At the end of the course, the student will be able to:

| CO1 Recall and understand the electromagnetic ration from celestial objects. Analyze the                                                                                                                                                                                                                                                                                                                               |                      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| wave nature of light in the form of ray diagram. Apply the knowledge of                                                                                                                                                                                                                                                                                                                                                |                      |
| phenomenon of diffraction and asses, how diffraction limits the resolution of any                                                                                                                                                                                                                                                                                                                                      |                      |
| system having a lens or mirror. Distinguish between reflecting and refracting                                                                                                                                                                                                                                                                                                                                          | K4                   |
| telescopes and their usage.                                                                                                                                                                                                                                                                                                                                                                                            | K5                   |
| CO2 Correlate luminosity, flux and magnitude, related to the brightness of a star.                                                                                                                                                                                                                                                                                                                                     | K1                   |
| Analyze the evolution of stars using HR diagram. Apply and examine the various                                                                                                                                                                                                                                                                                                                                         | K2                   |
| laws related to temperature of a star. Assess the distance of stars, measured using                                                                                                                                                                                                                                                                                                                                    | K3                   |
| trigonometric parallax method. Understand the position of star in the celestial                                                                                                                                                                                                                                                                                                                                        | K4                   |
| sphere. Distinguish between sideral and universal time.                                                                                                                                                                                                                                                                                                                                                                | K5                   |
| <b>CO3</b> Define nuclear fusion, which is the fundamental energy source of stars. Analyze, how neutrinos are born during the process of nuclear fusion in the sun. Recall and explain the CNO cycle – the main source of energy of hotter stars. Comprehend stellar evolution, including red giants, supernovas, neutron stars, pulsars, white dwarfs and black holes, using evidence and presently accepted theories | K1<br>K2<br>K3<br>K4 |
| <b>CO4</b> Remember and illustrate the structure of our Milky way galaxy. Classify the types of galaxies. Understand thepresence of dark matter in the universe. Explain, howquasars and active galaxies are powered by supermassiveblack holes which produce copious luminosity.                                                                                                                                      | K1<br>K2<br>K3<br>K4 |
| Explain cosmology, a branch of astronomy that involves the origin and evolution of the universe, from the Big Bangto today and on into the future. Define Hubble's law of cosmic expansion.                                                                                                                                                                                                                            | K1<br>K2<br>K3       |
| Analyze and assess the big bangnucleosynthesis universe that explains the relative                                                                                                                                                                                                                                                                                                                                     | K4<br>K5             |

#### MAPPING WITH PROGRAM OUTCOMES:

|     | PO1 | PO2 | PO3 | PO4 | PO5 | <b>PO6</b> | <b>PO7</b> | <b>PO8</b> | <b>PO9</b> | <b>PO10</b> |
|-----|-----|-----|-----|-----|-----|------------|------------|------------|------------|-------------|
| CO1 | 3   | 2   | 3   | 1   | 2   | 1          | 3          | 2          | 1          | 2           |
| CO2 | 3   | 2   | 3   | 1   | 2   | 1          | 3          | 2          | 1          | 2           |
| CO3 | 3   | 2   | 3   | 1   | 2   | 1          | 3          | 2          | 1          | 2           |
| CO4 | 3   | 2   | 3   | 1   | 2   | 1          | 3          | 2          | 1          | 2           |
| CO5 | 3   | 2   | 3   | 1   | 2   | 1          | 3          | 2          | 1          | 2           |

|     | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 | PSO6 | PSO7 | PSO8 | PSO9 | PSO10 |
|-----|------|------|------|------|------|------|------|------|------|-------|
| CO1 | 3    | 2    | 3    | 1    | 2    | 1    | 3    | 2    | 1    | 2     |
| CO2 | 3    | 2    | 3    | 1    | 2    | 1    | 3    | 2    | 1    | 2     |
| CO3 | 3    | 2    | 3    | 1    | 2    | 1    | 3    | 2    | 1    | 2     |
| CO4 | 3    | 2    | 3    | 1    | 2    | 1    | 3    | 2    | 1    | 2     |
| CO5 | 3    | 2    | 3    | 1    | 2    | 1    | 3    | 2    | 1    | 2     |

### **Elective – 1-C. PLASMA PHYSICS**

### I YEAR – I SEMESTER

| Subject<br>Code | Subject Name   | Category | L | Т | Р | Credits | Inst. Hours | Marks |
|-----------------|----------------|----------|---|---|---|---------|-------------|-------|
|                 | PLASMA PHYSICS | ELECTIVE |   |   |   | 3       | 5           | 75    |

### **Pre-Requisites**

Fundamentals of Electricity and Magnetism, Electromagnetic theory, Maxwell's equation, Basic knowledge of electrical and electronics instrumentation.

#### Learning Objectives

- > To explore the plasma universe by means of in-site and ground-based observations.
- $\succ$  To understand the model plasma phenomena in the universe.
- > To explore the physical processes which occur in the space environment.

| UNITS                                                                                 | Course Details                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|---------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| UNIT I:<br>FUNDAMENTAL<br>CONCEPTS OF<br>PLASMA                                       | Kinetic pressure in a partially ionized - mean free path and collision cross<br>section - Mobility of charged particles - Effect of magnetic field on the<br>mobility of ions and electrons-Thermal conductivity- Effect of magnetic<br>field- Quasi- neutrality of plasma Debye shielding distance - Optical<br>properties of plasma.                                                                                                                                                                        |
| UNIT II:<br>MOTION OF<br>CHARGED<br>PARTICLES IN<br>ELECTRIC AND<br>MAGNETIC<br>FIELD | Particle description of plasma- Motion of charged particle in electrostatic<br>field- Motion of charged particle in uniform magnetic field - Motion of<br>charged particle in electric and magnetic fields- Motion of charged particle<br>inhomogeneous magnetic field - Motion of charged particle in magnetic<br>mirror confinement - motion of an electron in a time varying electric field-<br>Magneto- hydrodynamics - Magneto-hydrodynamic equations – Condition<br>for magneto hydrodynamic behaviour. |
| UNIT III:<br>PLASMA<br>OSCILLATIONS<br>AND WAVES                                      | Introduction, theory of simple oscillations - electron oscillation in a plasma<br>– Derivations of plasma oscillations by using Maxwell's equation - Ion<br>oscillation and waves in a magnetic field - thermal effects on plasma<br>oscillations - Landau damping - Hydro magnetic waves - Oscillations in an<br>electron beam.                                                                                                                                                                              |
| UNIT IV:<br>PLASMA<br>DIAGNOSTICS<br>TECHNIQUES                                       | Single probe method - Double probe method - Use of probe technique for<br>measurement of plasma parameters in magnetic field - microwave method<br>- spectroscopic methodlaser as a tool for plasma diagnostics-X-ray<br>diagnostics of plasma - acoustic method - conclusion.                                                                                                                                                                                                                                |

| OF PLASMA | neto hydrodynamic Generator - Basic theory - Principle of Working<br>in MHD Generator - Generation of Microwaves Utilizing High Density<br>ma - Plasma Diode. |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|

| PragatiPrakashan, Meerut.2. Introduction to Plasma Physics-M. Uman3. Krall, N. A., and A. W. Trivelpiece. Principles of Plasma Physics.<br>Berkeley, CA: San Francisco Press, 1986. ISBN:<br>9780911302585.Tanenbaum, B. S. Plasma Physics. New York, NY:<br>McGraw-Hill, 1967. ISBN: 9780070628120.<br>4. Goldston, R. J., and P. H. Rutherford. Introduction to Plasma<br>Physics. Philadelphia, PA: IOP Publishing, 1995. ISBN:<br>9780750301831.<br>5. Hutchinson, I. H. Principles of Plasma Diagnostics. Cambridge, UK:<br>Cambridge University Press, 2005. ISBN:<br>9780521675741.REFERENCE<br>BOOKS1. Chen, F. F. Introduction to Plasma Theory-D.R. Nicholson<br>3. Shohet, J. L. The Plasma State. San Diego, CA: Academic Press Inc.,<br>1971. ISBN: 9780126405507.<br>4. Hazeltine, R. D., and F. L. Waelbroeck. The Framework of Plasma<br>Physics. Boulder, CO: Westview Press, 2004. ISBN: 9780813342139.<br>5. Huddlestone, R. H., and S. L. Leonard. Plasma Diagnostic<br>Techniques. San Diego, CA: Academic Press, 1965WEB SOURCES1. <a href="http://fusedweb.llnl.gov/Glossary/glossary.html&lt;br/">2. <a href="http://www.plasmas.org/">http://www.plasmas.org/</a>Http://www.plasmas.org/4. <a href="http://www.plasmas.org/">http://www.plasmas.org/</a>4. <a href="http://www.plasmas.org/">http://www.plasmas.org/</a></a>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             | 1. Plasma Physics- Plasma State of Matter - S. N.Sen,                  |  |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|------------------------------------------------------------------------|--|--|--|--|--|--|
| TEXT BOOKS3. Krall, N. A., and A. W. Trivelpiece. Principles of Plasma Physics.<br>Berkeley, CA: San Francisco Press, 1986. ISBN:<br>9780911302585.Tanenbaum, B. S. Plasma Physics. New York, NY:<br>McGraw-Hill, 1967. ISBN: 9780070628120.<br>4. Goldston, R. J., and P. H. Rutherford. Introduction to Plasma<br>Physics. Philadelphia, PA: IOP Publishing, 1995. ISBN:<br>9780750301831.<br>5. Hutchinson, I. H. Principles of Plasma Diagnostics. Cambridge, UK:<br>Cambridge University Press, 2005. ISBN:<br>9780521675741.REFERENCE<br>BOOKS1. Chen, F. F. Introduction to Plasma Theory-D.R. Nicholson<br>3. Shohet, J. L. The Plasma State. San Diego, CA: Academic Press Inc.,<br>1971. ISBN: 9780126405507.<br>4. Hazeltine, R. D., and F. L. Waelbroeck. The Framework of Plasma<br>Physics. Boulder, CO: Westview Press, 2004. ISBN: 9780813342139.<br>5. Huddlestone, R. H., and S. L. Leonard. Plasma Diagnostic<br>Techniques. San Diego, CA: Academic Press, 1965WEB SOURCES1. https://fusedweb.llnl.gov/Glossary/glossary.html<br>2. http://farside.ph.utexas.edu/teaching/plasma/lectures1/index.html<br>3. http://www.plasmas.org/<br>4. http://www.phy6.org/Education/whplasma.html                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             |                                                                        |  |  |  |  |  |  |
| TEXT BOOKS3. Krall, N. A., and A. W. Trivelpiece. Principles of Plasma Physics.<br>Berkeley, CA: San Francisco Press, 1986. ISBN:<br>9780911302585.Tanenbaum, B. S. Plasma Physics. New York, NY:<br>McGraw-Hill, 1967. ISBN: 9780070628120.<br>4. Goldston, R. J., and P. H. Rutherford. Introduction to Plasma<br>Physics. Philadelphia, PA: IOP Publishing, 1995. ISBN:<br>9780750301831.<br>5. Hutchinson, I. H. Principles of Plasma Diagnostics. Cambridge, UK:<br>Cambridge University Press, 2005. ISBN:<br>9780521675741.REFERENCE<br>BOOKS1. Chen, F. F. Introduction to Plasma Theory-D.R. Nicholson<br>3. Shohet, J. L. The Plasma State. San Diego, CA: Academic Press Inc.,<br>1971. ISBN: 9780126405507.<br>4. Hazeltine, R. D., and F. L. Waelbroeck. The Framework of Plasma<br>Physics. Boulder, CO: Westview Press, 2004. ISBN: 9780813342139.<br>5. Huddlestone, R. H., and S. L. Leonard. Plasma Diagnostic<br>Techniques. San Diego, CA: Academic Press, 1965WEB SOURCES1. https://fusedweb.llnl.gov/Glossary/glossary.html<br>2. http://farside.ph.utexas.edu/teaching/plasma/lectures1/index.html<br>3. http://www.plasmas.org/<br>4. http://www.phy6.org/Education/whplasma.html                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             | 2. Introduction to Plasma Physics-M. Uman                              |  |  |  |  |  |  |
| TEXT BOOKSBerkeley, CA: San Francisco Press, 1986. ISBN:<br>9780911302585.Tanenbaum, B. S. Plasma Physics. New York, NY:<br>McGraw-Hill, 1967. ISBN: 9780070628120.<br>4. Goldston, R. J., and P. H. Rutherford. Introduction to Plasma<br>Physics. Philadelphia, PA: IOP Publishing, 1995. ISBN:<br>9780750301831.<br>5. Hutchinson, I. H. Principles of Plasma Diagnostics. Cambridge, UK:<br>Cambridge University Press, 2005. ISBN:<br>9780521675741.REFERENCE<br>BOOKSI. Chen, F. F. Introduction to Plasma Theory-D.R. Nicholson<br>3. Shohet, J. L. The Plasma State. San Diego, CA: Academic Press Inc.,<br>1971. ISBN: 9780126405507.<br>4. Hazeltine, R. D., and F. L. Waelbroeck. The Framework of Plasma<br>Physics. Boulder, CO: Westview Press, 2004. ISBN: 9780813342139.<br>5. Huddlestone, R. H., and S. L. Leonard. Plasma Diagnostic<br>Techniques. San Diego, CA: Academic Press, 1965WEB SOURCES1. https://fusedweb.llnl.gov/Glossary/glossary.html<br>2. http://farside.ph.utexas.edu/teaching/plasma/lectures1/index.html<br>3. http://www.plasmas.org/<br>4. http://www.plasmas.org/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | •                                                                      |  |  |  |  |  |  |
| TEXT BOOKSMcGraw-Hill, 1967. ISBN: 9780070628120.4. Goldston, R. J., and P. H. Rutherford. Introduction to Plasma<br>Physics. Philadelphia, PA: IOP Publishing, 1995. ISBN:<br>9780750301831.5. Hutchinson, I. H. Principles of Plasma Diagnostics. Cambridge, UK:<br>Cambridge University Press, 2005. ISBN:<br>9780521675741.780750301831.8. Cambridge University Press, 2005. ISBN:<br>9780521675741.9780521675741.9780521675741.1. Chen, F. F. Introduction to Plasma Physics. 2nd ed. New York, NY:<br>Springer, 1984. ISBN: 9780306413322.2. Introduction to Plasma Theory-D.R. Nicholson<br>3. Shohet, J. L. The Plasma State. San Diego, CA: Academic Press Inc.,<br>1971. ISBN: 9780126405507.4. Hazeltine, R. D., and F. L. Waelbroeck. The Framework of Plasma<br>Physics. Boulder, CO: Westview Press, 2004. ISBN: 9780813342139.<br>5. Huddlestone, R. H., and S. L. Leonard. Plasma Diagnostic<br>Techniques. San Diego, CA: Academic Press, 1965WEB SOURCES1. https://fusedweb.llnl.gov/Glossary/glossary.html<br>3. http://www.plasmas.org/<br>4. http://www.phy6.org/Education/whplasma.html                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |                                                                        |  |  |  |  |  |  |
| TEXT BOOKSMcGraw-Hill, 1967. ISBN: 9780070628120.4. Goldston, R. J., and P. H. Rutherford. Introduction to Plasma<br>Physics. Philadelphia, PA: IOP Publishing, 1995. ISBN:<br>9780750301831.5. Hutchinson, I. H. Principles of Plasma Diagnostics. Cambridge, UK:<br>Cambridge University Press, 2005. ISBN:<br>9780521675741.780750301831.8. Cambridge University Press, 2005. ISBN:<br>9780521675741.9780521675741.9780521675741.1. Chen, F. F. Introduction to Plasma Physics. 2nd ed. New York, NY:<br>Springer, 1984. ISBN: 9780306413322.2. Introduction to Plasma Theory-D.R. Nicholson<br>3. Shohet, J. L. The Plasma State. San Diego, CA: Academic Press Inc.,<br>1971. ISBN: 9780126405507.4. Hazeltine, R. D., and F. L. Waelbroeck. The Framework of Plasma<br>Physics. Boulder, CO: Westview Press, 2004. ISBN: 9780813342139.<br>5. Huddlestone, R. H., and S. L. Leonard. Plasma Diagnostic<br>Techniques. San Diego, CA: Academic Press, 1965WEB SOURCES1. https://fusedweb.llnl.gov/Glossary/glossary.html<br>2. http://farside.ph.utexas.edu/teaching/plasma/lectures1/index.html<br>3. http://www.plasmas.org/<br>4. http://www.phy6.org/Education/whplasma.html                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             | 9780911302585.Tanenbaum, B. S. Plasma Physics. New York, NY:           |  |  |  |  |  |  |
| 4. Goldston, R. J., and P. H. Rutherford. Introduction to Plasma<br>Physics. Philadelphia, PA: IOP Publishing, 1995. ISBN:<br>9780750301831.5. Hutchinson, I. H. Principles of Plasma Diagnostics. Cambridge, UK:<br>Cambridge University Press, 2005. ISBN:<br>9780521675741.1. Chen, F. F. Introduction to Plasma Physics. 2nd ed. New York, NY:<br>Springer, 1984. ISBN: 9780306413322.2. Introduction to Plasma Theory-D.R. Nicholson<br>3. Shohet, J. L. The Plasma State. San Diego, CA: Academic Press Inc.,<br>1971. ISBN: 9780126405507.4. Hazeltine, R. D., and F. L. Waelbroeck. The Framework of Plasma<br>Physics. Boulder, CO: Westview Press, 2004. ISBN: 9780813342139.<br>5. Huddlestone, R. H., and S. L. Leonard. Plasma Diagnostic<br>Techniques. San Diego, CA: Academic Press, 1965WEB SOURCES1. <a href="https://fusedweb.llnl.gov/Glossary/glossary.html">http://farside.ph.utexas.edu/teaching/plasma/lectures1/index.html</a> 3. <a href="https://fusedweb.llnl.gov/Glossary/glossary.html">http://fusedweb.llnl.gov/Glossary/glossary.html</a> 4. <a href="https://fusedweb.llnl.gov/Glossary/glossary.html">http://fusedweb.llnl.gov/Glossary/glossary.html</a> 4. <a href="https://fusedweb.llnl.gov/Glossary/glossary.html">http://fusedweb.llnl.gov/Glossary/glossary.html</a> 4. <a href="https://fusedweb.llnl.gov/Glossary/glossary.html">http://fusedweb.llnl.gov/Glossary/glossary.html</a>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             | McGraw-Hill, 1967. ISBN: 9780070628120.                                |  |  |  |  |  |  |
| 9780750301831.5. Hutchinson, I. H. Principles of Plasma Diagnostics. Cambridge, UK:<br>Cambridge University Press, 2005. ISBN:<br>9780521675741.1. Chen, F. F. Introduction to Plasma Physics. 2nd ed. New York, NY:<br>Springer, 1984. ISBN: 9780306413322.<br>2. Introduction to Plasma Theory-D.R. Nicholson<br>3. Shohet, J. L. The Plasma State. San Diego, CA: Academic Press Inc.,<br>1971. ISBN: 9780126405507.<br>4. Hazeltine, R. D., and F. L. Waelbroeck. The Framework of Plasma<br>Physics. Boulder, CO: Westview Press, 2004. ISBN: 9780813342139.<br>5. Huddlestone, R. H., and S. L. Leonard. Plasma Diagnostic<br>Techniques. San Diego, CA: Academic Press, 1965WEB SOURCES1. <a href="https://fusedweb.llnl.gov/Glossary/glossary.html">https://fusedweb.llnl.gov/Glossary/glossary.html</a> 2. <a href="https://fusedweb.llnl.gov/Glossary/glossary.html">https://fusedweb.llnl.gov/Glossary/glossary.html</a> 3. <a href="https://fusedweb.llnl.gov/Glossary/glossary.html">https://fusedweb.llnl.gov/Glossary/glossary.html</a> 4. <a href="http://www.phg6.org/Education/whplasma.html">http://www.phg6.org/Education/whplasma.html</a>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | TEXT BOOKS  | 4. Goldston, R. J., and P. H. Rutherford. Introduction to Plasma       |  |  |  |  |  |  |
| S. Hutchinson, I. H. Principles of Plasma Diagnostics. Cambridge, UK:<br>Cambridge University Press, 2005. ISBN:<br>9780521675741.I. Chen, F. F. Introduction to Plasma Physics. 2nd ed. New York, NY:<br>Springer, 1984. ISBN: 9780306413322.<br>2. Introduction to Plasma Theory-D.R. Nicholson<br>3. Shohet, J. L. The Plasma State. San Diego, CA: Academic Press Inc.,<br>1971. ISBN: 9780126405507.<br>4. Hazeltine, R. D., and F. L. Waelbroeck. The Framework of Plasma<br>Physics. Boulder, CO: Westview Press, 2004. ISBN: 9780813342139.<br>5. Huddlestone, R. H., and S. L. Leonard. Plasma Diagnostic<br>Techniques. San Diego, CA: Academic Press, 1965WEB SOURCES1. <a href="https://fusedweb.llnl.gov/Glossary/glossary.html">http://farside.ph.utexas.edu/teaching/plasma/lectures1/index.html</a> 3. <a href="https://fusedweb.llnl.gov/Glossary/glossary.html">http://farside.ph.utexas.edu/teaching/plasma/lectures1/index.html</a> 3. <a href="http://fusedweb.llnl.gov/Glossary/glossary.html">http://fusedweb.llnl.gov/Glossary/glossary.html</a> 4. <a href="http://www.plasmas.org/4/4">http://www.plasmas.org/</a>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | Physics. Philadelphia, PA: IOP Publishing, 1995. ISBN:                 |  |  |  |  |  |  |
| Cambridge University Press, 2005. ISBN:<br>9780521675741.9780521675741.1. Chen, F. F. Introduction to Plasma Physics. 2nd ed. New York, NY:<br>Springer, 1984. ISBN: 9780306413322.<br>2. Introduction to Plasma Theory-D.R. Nicholson<br>3. Shohet, J. L. The Plasma State. San Diego, CA: Academic Press Inc.,<br>1971. ISBN: 9780126405507.800KS4. Hazeltine, R. D., and F. L. Waelbroeck. The Framework of Plasma<br>Physics. Boulder, CO: Westview Press, 2004. ISBN: 9780813342139.<br>5. Huddlestone, R. H., and S. L. Leonard. Plasma Diagnostic<br>Techniques. San Diego, CA: Academic Press, 1965WEB SOURCES1. <a href="https://fusedweb.llnl.gov/Glossary/glossary.html">https://fusedweb.llnl.gov/Glossary/glossary.html</a> 2. <a href="http://farside.ph.utexas.edu/teaching/plasma/lectures1/index.html">http://fusedweb.llnl.gov/Glossary/glossary.html</a> 3. <a href="http://www.phy6.org/Education/whplasma.html">http://www.phy6.org/Education/whplasma.html</a>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             | 9780750301831.                                                         |  |  |  |  |  |  |
| 9780521675741.I. Chen, F. F. Introduction to Plasma Physics. 2nd ed. New York, NY:<br>Springer, 1984. ISBN: 9780306413322.2. Introduction to Plasma Theory-D.R. Nicholson<br>3. Shohet, J. L. The Plasma State. San Diego, CA: Academic Press Inc.,<br>1971. ISBN: 9780126405507.4. Hazeltine, R. D., and F. L. Waelbroeck. The Framework of Plasma<br>Physics. Boulder, CO: Westview Press, 2004. ISBN: 9780813342139.<br>5. Huddlestone, R. H., and S. L. Leonard. Plasma Diagnostic<br>Techniques. San Diego, CA: Academic Press, 1965WEB SOURCES1. <a href="https://fusedweb.llnl.gov/Glossary/glossary.html">https://fusedweb.llnl.gov/Glossary/glossary.html</a> 2. <a href="https://fusedweb.llnl.gov/Glossary/glossary.html">https://fusedweb.llnl.gov/Glossary/glossary.html</a> 3. <a href="https://fusedweb.llnl.gov/Glossary/glossary.html">http://fusedweb.llnl.gov/Glossary/glossary.html</a> 4. <a href="http://www.plasmas.org/4">http://www.plasmas.org/</a> 4. <a href="http://www.phy6.org/Education/whplasma.html">http://www.phy6.org/Education/whplasma.html</a>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             | 5. Hutchinson, I. H. Principles of Plasma Diagnostics. Cambridge, UK:  |  |  |  |  |  |  |
| REFERENCE<br>BOOKS1. Chen, F. F. Introduction to Plasma Physics. 2nd ed. New York, NY:<br>Springer, 1984. ISBN: 9780306413322.<br>2. Introduction to Plasma Theory-D.R. Nicholson<br>3. Shohet, J. L. The Plasma State. San Diego, CA: Academic Press Inc.,<br>1971. ISBN: 9780126405507.<br>4. Hazeltine, R. D., and F. L. Waelbroeck. The Framework of Plasma<br>Physics. Boulder, CO: Westview Press, 2004. ISBN: 9780813342139.<br>5. Huddlestone, R. H., and S. L. Leonard. Plasma Diagnostic<br>Techniques. San Diego, CA: Academic Press, 1965WEB SOURCES1. https://fusedweb.llnl.gov/Glossary/glossary.html<br>2. http://farside.ph.utexas.edu/teaching/plasma/lectures1/index.html<br>3. http://www.plasmas.org/<br>4. http://www.phy6.org/Education/whplasma.html                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             | Cambridge University Press, 2005. ISBN:                                |  |  |  |  |  |  |
| REFERENCE<br>BOOKSSpringer, 1984. ISBN: 9780306413322.<br>2. Introduction to Plasma Theory-D.R. Nicholson<br>3. Shohet, J. L. The Plasma State. San Diego, CA: Academic Press Inc.,<br>1971. ISBN: 9780126405507.<br>4. Hazeltine, R. D., and F. L. Waelbroeck. The Framework of Plasma<br>Physics. Boulder, CO: Westview Press, 2004. ISBN: 9780813342139.<br>5. Huddlestone, R. H., and S. L. Leonard. Plasma Diagnostic<br>Techniques. San Diego, CA: Academic Press, 1965WEB SOURCES1. <a href="http://fusedweb.llnl.gov/Glossary/glossary.html">http://fusedweb.llnl.gov/Glossary/glossary.html</a><br>2. <a href="http://farside.ph.utexas.edu/teaching/plasma/lectures1/index.html">http://farside.ph.utexas.edu/teaching/plasma/lectures1/index.html</a> WEB SOURCES1. <a href="http://www.phy6.org/Education/whplasma.html">http://www.phy6.org/Education/whplasma.html</a>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             | 9780521675741.                                                         |  |  |  |  |  |  |
| REFERENCE<br>BOOKS2. Introduction to Plasma Theory-D.R. Nicholson<br>3. Shohet, J. L. The Plasma State. San Diego, CA: Academic Press Inc.,<br>1971. ISBN: 9780126405507.<br>4. Hazeltine, R. D., and F. L. Waelbroeck. The Framework of Plasma<br>Physics. Boulder, CO: Westview Press, 2004. ISBN: 9780813342139.<br>5. Huddlestone, R. H., and S. L. Leonard. Plasma Diagnostic<br>Techniques. San Diego, CA: Academic Press, 1965WEB SOURCES1. <a href="http://fusedweb.llnl.gov/Glossary/glossary.html">http://fusedweb.llnl.gov/Glossary/glossary.html</a><br>2. <a href="http://fusedweb.llnl.gov/Glossary/glossary.html">http://fusedweb.llnl.gov/Glossary/glossary.html</a> WEB SOURCES1. <a href="http://fusedweb.llnl.gov/Glossary/glossary.html">http://fusedweb.llnl.gov/Glossary/glossary.html</a><br>3. <a href="http://fusedweb.llnl.gov/Glossary/glossary.html">http://fusedweb.llnl.gov/Glossary/glossary.html</a><br>3. <a href="http://fusedweb.llnl.gov/Glossary/glossary.html">http://fusedweb.llnl.gov/Glossary/glossary.html</a><br>3. <a href="http://fusedweb.llnl.gov/Glossary/glossary.html">http://fusedweb.llnl.gov/Glossary/glossary.html</a><br>3. <a fusedweb.llnl.gov="" glossary="" glossary.html"="" href="http://www.plasmas.org/4.http://www.plasmas.org/4.http://www.plasmas.org/4.http://www.plasmas.org/4.http://www.plasmas.org/4.http://www.plasmas.org/4.http://www.plasmas.org/4.http://www.plasmas.org/4.http://www.plasmas.org/4.http://www.plasmas.org/4.http://www.plasmas.org/4.http://www.plasmas.org/4.http://www.plasmas.org/4.http://www.plasmas.org/4.http://www.plasmas.org/4.http://www.plasmas.org/4.http://www.plasmas.org/4.http://www.plasmas.org/4.http://www.plasmas.org/4.http://www.plasmas.org/4.http://www.plasmas.org/4.http://www.plasmas.org/4.http://www.plasmas.org/4.http://www.plasmas.org/4.http://www.plasmas.org/4.http://www.plasmas.org/4.http://www.plasmas.org/4.http://www.plasmas.org/4.http://www.plasmas.org/4.http://www.plasmas.org/4.http://www.plasmas.org/4.http://www.plasmas.org/4.http://w&lt;/th&gt;&lt;th&gt;&lt;/th&gt;&lt;th&gt;1. Chen, F. F. Introduction to Plasma Physics. 2nd ed. New York, NY:&lt;/th&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td&gt;REFERENCE&lt;br/&gt;BOOKS3. Shohet, J. L. The Plasma State. San Diego, CA: Academic Press Inc.,&lt;br/&gt;1971. ISBN: 9780126405507.&lt;br/&gt;4. Hazeltine, R. D., and F. L. Waelbroeck. The Framework of Plasma&lt;br/&gt;Physics. Boulder, CO: Westview Press, 2004. ISBN: 9780813342139.&lt;br/&gt;5. Huddlestone, R. H., and S. L. Leonard. Plasma Diagnostic&lt;br/&gt;Techniques. San Diego, CA: Academic Press, 1965WEB SOURCES1. &lt;a href=" https:="">https://fusedweb.llnl.gov/Glossary/glossary.html</a><br>3. <a href="https://farside.ph.utexas.edu/teaching/plasma/lectures1/index.html">http://farside.ph.utexas.edu/teaching/plasma/lectures1/index.html</a> WEB SOURCES1. <a href="https://www.plasmas.org/4">http://www.plasmas.org/</a> Hutp://www.phy6.org/Education/whplasma.html <th></th> <td colspan="7">Springer, 1984. ISBN: 9780306413322.</td> |             | Springer, 1984. ISBN: 9780306413322.                                   |  |  |  |  |  |  |
| REFERENCE<br>BOOKS1971. ISBN: 9780126405507.<br>4. Hazeltine, R. D., and F. L. Waelbroeck. The Framework of Plasma<br>Physics. Boulder, CO: Westview Press, 2004. ISBN: 9780813342139.<br>5. Huddlestone, R. H., and S. L. Leonard. Plasma Diagnostic<br>Techniques. San Diego, CA: Academic Press, 1965WEB SOURCES1. <a href="https://fusedweb.llnl.gov/Glossary/glossary.html">https://fusedweb.llnl.gov/Glossary/glossary.html</a><br>2. <a href="http://farside.ph.utexas.edu/teaching/plasma/lectures1/index.html">http://farside.ph.utexas.edu/teaching/plasma/lectures1/index.html</a> WEB SOURCES3. <a href="http://www.phy6.org/Education/whplasma.html">http://www.phy6.org/Education/whplasma.html</a>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             | 2. Introduction to Plasma Theory-D.R. Nicholson                        |  |  |  |  |  |  |
| BOOKS       4. Hazeltine, R. D., and F. L. Waelbroeck. The Framework of Plasma<br>Physics. Boulder, CO: Westview Press, 2004. ISBN: 9780813342139.         5. Huddlestone, R. H., and S. L. Leonard. Plasma Diagnostic<br>Techniques. San Diego, CA: Academic Press, 1965         1.       https://fusedweb.llnl.gov/Glossary/glossary.html         2.       http://farside.ph.utexas.edu/teaching/plasma/lectures1/index.html         3.       http://www.plasmas.org/         4.       http://www.phy6.org/Education/whplasma.html                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             | 3. Shohet, J. L. The Plasma State. San Diego, CA: Academic Press Inc., |  |  |  |  |  |  |
| WEB SOURCES       Physics. Boulder, CO: Westview Press, 2004. ISBN: 9780813342139.         5. Huddlestone, R. H., and S. L. Leonard. Plasma Diagnostic Techniques. San Diego, CA: Academic Press, 1965         1.       https://fusedweb.llnl.gov/Glossary/glossary.html         2.       http://farside.ph.utexas.edu/teaching/plasma/lectures1/index.html         3.       http://www.plasmas.org/         4.       http://www.phy6.org/Education/whplasma.html                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | REFERENCE   | 1971. ISBN: 9780126405507.                                             |  |  |  |  |  |  |
| S. Huddlestone, R. H., and S. L. Leonard. Plasma Diagnostic Techniques. San Diego, CA: Academic Press, 1965         I.       https://fusedweb.llnl.gov/Glossary/glossary.html         2.       http://farside.ph.utexas.edu/teaching/plasma/lectures1/index.html         3.       http://www.plasmas.org/         4.       http://www.phy6.org/Education/whplasma.html                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | BOOKS       | 4. Hazeltine, R. D., and F. L. Waelbroeck. The Framework of Plasma     |  |  |  |  |  |  |
| WEB SOURCES       1.       https://fusedweb.llnl.gov/Glossary/glossary.html         2.       http://farside.ph.utexas.edu/teaching/plasma/lectures1/index.html         3.       http://www.plasmas.org/         4.       http://www.phy6.org/Education/whplasma.html                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |                                                                        |  |  |  |  |  |  |
| WEB SOURCES       1. <u>https://fusedweb.llnl.gov/Glossary/glossary.html</u> 2. <u>http://farside.ph.utexas.edu/teaching/plasma/lectures1/index.html</u> 3. <u>http://www.plasmas.org/</u> 4. <u>http://www.phy6.org/Education/whplasma.html</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             | •                                                                      |  |  |  |  |  |  |
| WEB SOURCES       2.       http://farside.ph.utexas.edu/teaching/plasma/lectures1/index.html         3.       http://www.plasmas.org/         4.       http://www.phy6.org/Education/whplasma.html                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             | Techniques. San Diego, CA: Academic Press, 1965                        |  |  |  |  |  |  |
| WEB SOURCES       2.       http://farside.ph.utexas.edu/teaching/plasma/lectures1/index.html         3.       http://www.plasmas.org/         4.       http://www.phy6.org/Education/whplasma.html                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             |                                                                        |  |  |  |  |  |  |
| WEB SOURCES3. <a href="http://www.plasmas.org/">http://www.plasmas.org/</a> 4. <a href="http://www.phy6.org/Education/whplasma.html">http://www.phy6.org/Education/whplasma.html</a>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |                                                                        |  |  |  |  |  |  |
| 4. <u>http://www.phy6.org/Education/whplasma.html</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | WED SOUDCES |                                                                        |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | WED SUUKCES |                                                                        |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |                                                                        |  |  |  |  |  |  |

### At the end of the course, the student will be able to:

| CO1     | Understand the collision, cross section of charged particles and to able to correlate the magnetic effect of ion and electrons in plasma state. | K1, K | ζ2 |  |  |
|---------|-------------------------------------------------------------------------------------------------------------------------------------------------|-------|----|--|--|
|         | Understand the plasma and learn the magneto-hydrodynamics concepts applied to plasma.                                                           | K2    |    |  |  |
| CO3     | Explore the oscillations and waves of charged particles and thereby apply the Maxwell's equation to quantitative analysis of plasma.            | K1, K | ζ3 |  |  |
| CO4     | Analyze the different principle and techniques to diagnostics of plasma.                                                                        | K2, K | ζ5 |  |  |
| CO5     | Learn the possible applications of plasma by incorporating various electrical and electronic instruments.                                       | K4    |    |  |  |
| K1 - Re | K1 - Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate;                                                                        |       |    |  |  |

### MAPPING WITH PROGRAM OUTCOMES:

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | <b>PO7</b> | PO8 | PO9 | PO10 |
|-----|-----|-----|-----|-----|-----|-----|------------|-----|-----|------|
| CO1 | 3   | 3   | 2   | 1   | 1   | 2   | 1          | 2   | 3   | 3    |
| CO2 | 3   | 3   | 2   | 1   | 1   | 2   | 1          | 2   | 3   | 3    |
| CO3 | 3   | 3   | 2   | 2   | 1   | 2   | 1          | 3   | 3   | 3    |
| CO4 | 3   | 3   | 3   | 2   | 1   | 2   | 1          | 3   | 3   | 3    |
| CO5 | 3   | 3   | 3   | 2   | 1   | 2   | 1          | 3   | 3   | 3    |

|     | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 | PSO6 | PSO7 | PSO8 | PSO9 | PSO10 |
|-----|------|------|------|------|------|------|------|------|------|-------|
| CO1 | 3    | 3    | 2    | 1    | 1    | 2    | 1    | 2    | 3    | 3     |
| CO2 | 3    | 3    | 2    | 1    | 1    | 2    | 1    | 2    | 3    | 3     |
| CO3 | 3    | 3    | 2    | 2    | 1    | 2    | 1    | 3    | 3    | 3     |
| CO4 | 3    | 3    | 3    | 2    | 1    | 2    | 1    | 3    | 3    | 3     |
| CO5 | 3    | 3    | 3    | 2    | 1    | 2    | 1    | 3    | 3    | 3     |

## Elective 2-A:LINEAR AND DIGITAL ICsI YEAR – I SEMESTER(Discipline Centric)& APPLICATIONS

| Subject<br>Code | Subject Name                               | Category | L | Т | Р | Credits | Inst. Hours | Marks |
|-----------------|--------------------------------------------|----------|---|---|---|---------|-------------|-------|
|                 | LINEAR AND DIGITAL ICs AND<br>APPLICATIONS | Elective |   |   |   | 3       | 6           | 75    |

|                  | Pre-Requisites                                                                      |
|------------------|-------------------------------------------------------------------------------------|
| Knowledge of     | of semiconductor devices, basic concepts of digital and analog electronics          |
|                  | Learning Objectives                                                                 |
| $\succ$          | To introduce the basic building blocks of linear integrated circuits.               |
| $\succ$          | To teach the linear and non-linear applications of operational amplifiers.          |
| $\succ$          | To introduce the theory and applications of PLL.                                    |
| $\succ$          | To introduce the concepts of waveform generation and introduce one special function |
| ICs.             |                                                                                     |
| $\triangleright$ | Exposure to digital IC's                                                            |

| UNITS                                                             | Course Details                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| UNIT I:<br>INTEGRATED<br>CIRCUITS AND<br>OPERATIONAL<br>AMPLIFIER | <b>Introduction</b> , Classification of IC's, Op-Amp 741 and its features, the ideal Operational amplifier, Op-Amp internal circuit diagram, Op-Amp Characteristics – Inverting and Non-Inverting Modes of operation- DC and AC performance Characteristics.                                                                                                                                                                                                                                                  |
| UNIT II:<br>APPLICATIONS OF<br>OP-AMP                             | <ul> <li>Linear applications of Op-Amp: Solution to simultaneous equations and differential equations, Instrumentation amplifiers, V to I and I to V converters.</li> <li>Non-linear applications of Op-Amp: Sample and Hold circuit, Log and Antilog amplifier, multiplier and divider, Comparators, Schmitt trigger, Multivibrators, Triangular and Square waveform generators.</li> </ul>                                                                                                                  |
| UNIT III:<br>ACTIVE FILTERS &<br>TIMER AND PHASE<br>LOCKED LOOPS  | Active filters: Introduction, Butterworth filters – 1st order, 2nd order low<br>and high pass filters, band pass, band reject and All pass filters- Applications.<br><b>Timer and Phase Locked Loops:</b> Introduction to IC 555 timer,<br>description of functional diagram, monostable and astable operations and<br>applications, Schmitt trigger, voltage controlled oscillator (IC 566), PLL -<br>introduction, basic principle, phase detector/comparator, monolithic PLL (IC<br>565) and applications. |

| UNIT IV:<br>VOLTAGE<br>REGULATOR &<br>D to A AND A to D<br>CONVERTERS                                                          | <ul> <li>Voltage Regulators: Introduction, Series Op-Amp regulator, IC Voltage Regulators, IC 723 general purpose regulators, Switching Regulator.</li> <li>DAC and ADC: Introduction, basic DAC techniques weighted resistor DAC, R-2R ladder DAC, inverted R-2R DAC, A to D converters -parallel comparator type ADC, counter type ADC, successive approximation ADC and dual slope ADC, DAC and ADC Specifications.</li> </ul>                                                                                                                                                                                                                                                                     |
|--------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| UNIT V:<br>CMOS LOGIC,<br>COMBINATIONAL<br>CIRCUITS USING<br>TTL 74XX ICs<br>&<br>SEQUENTIAL<br>CIRCUITS USING<br>TTL 74XX ICs | <b>CMOS Logic</b> : CMOS logic levels, MOS transistors, Basic CMOS<br>Inverter, NAND and NOR gates, CMOS AND-OR-INVERT and OR AND-<br>INVERT gates, implementation of any function using CMOS logic.<br><b>Combinational circuits using TTL 74xx ICs</b> : Study of logic gates using<br>74XX ICs, Four-bit parallel adder (IC 7483), Comparator (IC 7485),<br>Decoder (IC 74138, IC 74154)BCD to 7-segment decoder (IC7446/7447),<br>Encoder (IC74147), Multiplexer (IC74151), De multiplexer (IC 74154).<br><b>Sequential circuits using TTL 74xx ICs:</b> Flip Flops (IC 7474, IC 7473),<br>Shift Registers, Universal Shift Register (IC 74194), 4- bit asynchronous<br>binary counter (IC 7493). |

| TEXT<br>BOOKS      | <ol> <li>D. Roy Choudhury, Shail B. Jain (2012), Linear Integrated Circuit, 4th edition, New Age International Pvt.Ltd., NewDelhi,India.</li> <li>Ramakant A. Gayakwad, (2012), OP-AMP and Linear Integrated Circuits, 4th edition, Prentice Hall / Pearson Education, NewDelhi.</li> <li>B.L. Theraja and A.K. Theraja, 2004, A Textbook of Electrical technology, S. Chand &amp; Co.</li> <li>V.K. Mehta and Rohit Mehta, 2008, Principles of Electronics, S. Chand &amp; Co, 12th Edition.</li> <li>V. Vijayendran, 2008, Introduction to Integrated electronics (Digital &amp; Analog), S.Viswanathan Printers &amp; Publishers Private Ltd, Reprint. V.</li> </ol> |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| REFERENCE<br>BOOKS | <ol> <li>Sergio Franco (1997), Design with operational amplifiers and analog<br/>integrated circuits, McGraw Hill, New Delhi.</li> <li>Gray, Meyer (1995), Analysis and Design of Analog Integrated Circuits,<br/>Wiley International, New Delhi.</li> <li>Malvino and Leach (2005), Digital Principles and Applications 5th<br/>Edition, Tata McGraw Hill, New Delhi</li> <li>Floyd, Jain (2009), Digital Fundamentals, 8th edition, Pearson<br/>Education, New Delhi.</li> <li>Integrated Electronics, Millman&amp;Halkias, Tata McGraw Hill, 17th<br/>Reprint (2000)</li> </ol>                                                                                      |

|         | 1. https://nptel.ac.in/course.html/digital circuits/                     |
|---------|--------------------------------------------------------------------------|
|         | 2. https://nptel.ac.in/course.html/electronics/operational amplifier/    |
| WED     | 3. https://www.allaboutcircuits.com/textbook/semiconductors/chpt7/field- |
| WEB     | effect-controlled-thyristors/                                            |
| SOURCES | 4. https://www.electrical4u.com/applications-of-op-amp/                  |
|         | 5. https://www.geeksforgeeks.org/digital-electronics-logic-              |
|         | designtutorials/                                                         |

### At the end of the course the student will be able to:

| CO1     | Learn about the basic concepts for the circuit configuration for the design of linear integrated circuits and develops skill to solve problems | K1,<br>K5 |  |  |  |  |  |
|---------|------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--|--|--|--|--|
| CO2     | Develop skills to design linear and non-linear applications circuits using OpAmp and design the active filters circuits.                       | К3        |  |  |  |  |  |
| CO3     | Gain knowledge about PLL, and develop the skills to design the simple circuits using IC 555 timer and can solve problems related to it.        | K1,<br>K3 |  |  |  |  |  |
| CO4     | Learn about various techniques to develop A/D and D/A converters.                                                                              | K2        |  |  |  |  |  |
| CO5     | Acquire the knowledge about the CMOS logic, combinational and sequential circuits                                                              | K1,<br>K4 |  |  |  |  |  |
| K1 - Re | K1 - Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 – Evaluate                                                                        |           |  |  |  |  |  |

### MAPPING WITH PROGRAM OUTCOMES:

|     | <b>PO1</b> | PO2 | PO3 | PO4 | PO5 | PO6 | <b>PO7</b> | PO8 | PO9 | PO10 |
|-----|------------|-----|-----|-----|-----|-----|------------|-----|-----|------|
| C01 | 3          | 3   | 3   | 3   | 2   | 2   | 3          | 3   | 3   | 2    |
| CO2 | 3          | 3   | 3   | 3   | 1   | 3   | 3          | 3   | 2   | 1    |
| CO3 | 3          | 3   | 3   | 3   | 1   | 3   | 3          | 3   | 2   | 1    |
| CO4 | 3          | 3   | 3   | 3   | 1   | 3   | 3          | 3   | 2   | 1    |
| CO5 | 3          | 3   | 3   | 2   | 1   | 1   | 2          | 3   | 2   | 1    |

|     | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 | PSO6 | PSO7 | PSO8 | PSO9 | PSO10 |
|-----|------|------|------|------|------|------|------|------|------|-------|
| CO1 | 3    | 3    | 3    | 3    | 2    | 2    | 3    | 3    | 3    | 2     |
| CO2 | 3    | 3    | 3    | 3    | 1    | 3    | 3    | 3    | 2    | 1     |
| CO3 | 3    | 3    | 3    | 3    | 1    | 3    | 3    | 3    | 2    | 1     |
| CO4 | 3    | 3    | 3    | 3    | 1    | 3    | 3    | 3    | 2    | 1     |
| CO5 | 3    | 3    | 3    | 2    | 1    | 1    | 2    | 3    | 2    | 1     |

### **Elective 2-B. DIGITAL COMMUNICATION**

### I YEAR – FIRST SEMSTER

| Subject<br>Code | Subject Name          | Category | L | Т | Р | Credits | Inst. Hours | Marks |
|-----------------|-----------------------|----------|---|---|---|---------|-------------|-------|
|                 | DIGITAL COMMUNICATION | Elective |   |   |   | 3       | 6           | 75    |

|              | Pre-Requisites                                                                                 |  |  |  |  |  |  |  |
|--------------|------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| Exposure to  | Exposure to Fourier transform, pulse modulation, multiplexing, noises in communication signals |  |  |  |  |  |  |  |
|              | Learning Objectives                                                                            |  |  |  |  |  |  |  |
| $\checkmark$ | To understand the use of Fourier, transform in analyzing the signals                           |  |  |  |  |  |  |  |
| $\succ$      | To learn about the quanta of transmission of information                                       |  |  |  |  |  |  |  |
| $\succ$      | To make students familiar with different types of pulse modulation                             |  |  |  |  |  |  |  |
| $\succ$      | To have an in depth knowledge about the various methods of error controlling codes             |  |  |  |  |  |  |  |
| $\succ$      | To acquire knowledge about spread spectrum techniques in getting secured                       |  |  |  |  |  |  |  |
| com          | communication                                                                                  |  |  |  |  |  |  |  |

| UNITS                             | Course Details                                                                                                                                                                                                                                                                                                                                                                   |
|-----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| UNIT I:<br>SIGNAL<br>ANALYSIS     | Fourier transforms of gate functions, delta functions at the origin – Two delta<br>function and periodic delta function – Properties of Fourier transform –<br>Frequency shifting –Time shifting - Convolution –Graphical representation<br>– Convolution theorem – Time Convolution theorem – Frequency<br>Convolution theorem –Sampling theorem.                               |
| UNIT II:<br>INFORMATION<br>THEORY | Communication system – Measurement of information – Entropy- Source<br>Encoding - Coding – Baudot Code CCITT Code –Hartley Law – Noise in an<br>information Carrying Channel- Effects of noise- Capacity of noise in a<br>channel – Channel capacity of continuous channel- Shannon Hartley theorem<br>–Redundancy- Practical communication system in lights of Shannon theorem  |
| UNIT III:<br>PULSE<br>MODULATION  | Pulse amplitude modulation - natural sampling – Instantaneous sampling -<br>Transmission of PAM Signals -Pulse width modulation – Time division<br>multiplexing – Band width requirements for PAM Signals. Pulse Code<br>Modulation –Principles of PCM –Quantizing noise – Generation and<br>demodulation of PCM -Effects of noise –Companding – Advantages and<br>application . |

| UNIT IV: | Error Correcting Codes Introduction, Linear Block Code, Hamming Codes,       |
|----------|------------------------------------------------------------------------------|
| ERROR    | Cyclic Code, Burst error detecting and correcting codes, Interlace codes for |
| CONTROL  | burst and random error correction, Convolution Code, Grain Viterbi decoding  |
| CODING   | Comparison of coded and un coded system.                                     |
| UNIT V:  | Introduction to spread spectrum, spread spectrum techniques,Pseudo noise     |
| SPREAD   | sequences - generation and Correlation properties- Direct sequence system,   |
| SPECTRUM | frequency hopping system, pulse FM (chirp) system, hybrid systems.           |
| SYSTEMS  | processing gain, anti-jam and multipath performance.                         |

| TEXT BOOKS         | <ol> <li>B.P. Lathi, <i>Communication system</i>, Wiley Eastern.</li> <li>George Kennedy, <i>Electronic Communication Systems</i>, 3<sup>rd</sup> Edition, Mc Graw Hill.</li> <li>Simon Haykin, <i>Communication System</i>, 3<sup>rd</sup> Edition, John Wiley &amp; Sons.</li> <li>George Kennedy and Davis, 1988, <i>Electronic Communication System</i>, Tata McGraw Hill 4<sup>th</sup> Edition.</li> <li>Taube and Schilling, 1991, "<i>Principles of Communication System</i>", Second edition Tata McGraw Hill</li> <li>Modern Digital and Analog Communication Systems, B. P. Lathi, (3rd Edition), Oxford Publication</li> <li>Principles of Communication Systems, Taub &amp; Schilling, (2nd Edition), Tata McGraw Hill Publication</li> <li>S.Haykin, Communication systems, John Wiley 2001 4.</li> <li>Bhattacharya Amitabh, "Digital Communication", Tata McGraw-Hill, 1st Ed., 2006.</li> <li>R. C. Dixen, "Spread Spectrum Systems with commercial application", John Wiley, 3rd Ed.</li> </ol> |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| REFERENCE<br>BOOKS | <ol> <li>John Proakis, 1995, <i>Digital Communication</i>, 3<sup>rd</sup> Edition, McGraw<br/>Hill, Malaysia.</li> <li>M. K. Simen, 1999, <i>Digital Communication Techniques, Signal Design and Detection</i>, Prentice Hall of India.</li> <li>Dennis Roddy and Coolen, 1995, <i>Electronics communications</i>, Prentice Hall of India IV Edition.</li> <li>Wave Tomasi, 1998, "<i>Advanced Electronics communication System</i>" 4<sup>th</sup><br/>Edition Prentice Hall, Inc.</li> <li>M.Kulkarni, 1988, "<i>Microwave and Radar Engineering</i>", Umesh Publications.</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                           |

|             | 1.    | http://nptel.iitm.ac.in/                                    |
|-------------|-------|-------------------------------------------------------------|
|             | 2.    | http://web.ewu.edu/                                         |
| WEB SOURCES | 3.    | http://www.ece.umd.edu/class/enee630.F2012.html             |
|             | 4.    | http://www.aticourses.com/Advanced%20Topics%20in%20Digital% |
|             | 20Sig | nals 5. http://nptel.iitm.ac.in/courses/117101051.html      |

### At the end of the course, the student will be able to:

| CO1     | Apply the techniques of Fourier transform, convolution and sampling theorems                                     | K1, K3 |  |  |  |  |  |  |
|---------|------------------------------------------------------------------------------------------------------------------|--------|--|--|--|--|--|--|
|         | in signal processing                                                                                             |        |  |  |  |  |  |  |
| CO2     | Apply different information theories in the process of study of coding of information, storage and communication | К3     |  |  |  |  |  |  |
| CO3     | Explain and compare the various methods of pulse modulation techniques                                           | K4     |  |  |  |  |  |  |
| CO4     | Apply the error control coding techniques in detecting and correcting errors- able                               | КЗ,    |  |  |  |  |  |  |
|         | to discuss, analyze and compare the different error control coding                                               | K4     |  |  |  |  |  |  |
| CO5     | Apply, discuss and compare the spread spectrum techniques for secure communications                              | K3, k5 |  |  |  |  |  |  |
| K1 - Re | K1 - Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate;                                         |        |  |  |  |  |  |  |

### MAPPING WITH PROGRAM OUTCOMES:

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|
| CO1 | 3   | 3   | 3   | 1   | 2   | 2   | 3   | 2   | 2   | 3    |
| CO2 | 3   | 3   | 3   | 1   | 2   | 2   | 3   | 2   | 2   | 3    |
| CO3 | 3   | 3   | 3   | 1   | 2   | 2   | 3   | 2   | 2   | 3    |
| CO4 | 3   | 3   | 3   | 1   | 2   | 2   | 3   | 2   | 2   | 3    |
| CO5 | 3   | 3   | 3   | 1   | 2   | 2   | 3   | 2   | 2   | 3    |

|     | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 | PSO6 | PSO7 | PSO8 | PSO9 | PSO10 |
|-----|------|------|------|------|------|------|------|------|------|-------|
| CO1 | 3    | 3    | 3    | 1    | 2    | 2    | 3    | 2    | 2    | 3     |
| CO2 | 3    | 3    | 3    | 1    | 2    | 2    | 3    | 2    | 2    | 3     |
| CO3 | 3    | 3    | 3    | 1    | 2    | 2    | 3    | 2    | 2    | 3     |
| CO4 | 3    | 3    | 3    | 1    | 2    | 2    | 3    | 2    | 2    | 3     |
| CO5 | 3    | 3    | 3    | 1    | 2    | 2    | 3    | 2    | 2    | 3     |
|     |      |      |      |      |      |      |      |      |      |       |

| Elective 2-C. | COMMUNICATION | I YEAR – FIRST SEMSTER |
|---------------|---------------|------------------------|
|               | ELECTRONICS   |                        |

| Subject<br>Code | Subject Name              | Category | L | Т | Р | Credits | Inst. Hours | Marks |
|-----------------|---------------------------|----------|---|---|---|---------|-------------|-------|
|                 | COMMUNICATION ELECTRONICS | Elective |   |   |   | 3       | 6           | 75    |

#### **Pre-Requisites**

Knowledge of Regions of electromagnetic spectrum and its characteristics

### Learning Objectives

 $\succ$  To comprehend the transmission of electromagnetic waves thorough different types of antenna and also to acquire knowledge about the propagation of waves through earth's atmosphere and along the surface of the earth

- To gain knowledge in the generation and propagation of microwaves
- $\succ$  To acquire knowledge about radar systems and its applications and also the working principle of colour television
- > To learn the working principle of fiber optics and its use in telecommunication
- > To understand the general theory and operation of satellite communication systems

| UNITS                                         | Course Details                                                                                                                                                                                                                                                                                                                                                       |
|-----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| UNIT I<br>ANTENNAS AND<br>WAVE<br>PROPAGATION | Radiation field and radiation resistance of short dipole antenna grounded<br>antenna-ungrounded antenna-antenna arrays-broadside and end side<br>arrays-antenna gain-directional high frequency antennas-sky wave-<br>ionosphere- Eccles and Larmor theory- Magneto ionic theory- ground<br>wave propagation                                                         |
| UNIT II<br>MICROWAVES                         | Microwave generation—multi cavity Klystron-reflex klystron magnetron<br>travelling wave tubes (TWT) and other microwave tubes MASER-<br>Gunndiode-wave guides-rectangular wave guides-standing wave<br>indicator and standing wave ratio(SWR)                                                                                                                        |
| UNIT III<br>RADAR AND<br>TELEVISION           | Elements of a radar system-radar equation-radar performance Factors<br>radar transmitting systems-radar antennas-duplexers radar receivers and<br>indicators-pulsed systems-other radar systems colour TV transmission<br>and reception-colour mixing principle-colour picture tubes-Delta gun<br>picture tube-PIL colour picture tube-cable TV, CCTV and theatre TV |

| UNIT IV<br>SATELLITE<br>COMMUNICATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Orbital satellites-geostationary satellites-orbital patterns-satellite system<br>link models-satellite system parameters-satellite system link equation<br>link budget-INSAT communication satellites-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| UNIT V<br>EARTH STATION<br>TECHNOLOGY:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Transmitters, Receivers, Antennas, Tracking systems, Terrestrial<br>Interface, Power Test methods, Lower Orbit Considerations. Satellite<br>Navigation & Global Positioning Systems: Radio and Satellite<br>Navigation, GPS Position Location principles, GPS Receivers, GPS C/A<br>code accuracy, Differential GPS.                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |
| TEXT BOOKS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <ol> <li>Handbook of Electronics by Gupta and Kumar, 2008 edition.</li> <li>Electronic communication systems – George Kennedy and Davis,<br/>Tata McGraw Hill, 4th edition, 1988.</li> <li>Taub and Schilling, principles of communication systems, second<br/>edition, Tata Mc Graw Hill (1991).</li> <li>M. Kulkarani, Microwave and radar engineering,<br/>UmeshPublications, 1998.</li> <li>Mono Chrome and colour television, R. R. Ghulathi</li> <li>Satellite Communication Engineering- Wilbur L. Pritchand, Robert<br/>A Nelson and Henri G.Suyderhoud, 2nd Edition, Pearson Publications.</li> <li>Digital Satellite Communications-Tri. T.Ha, 2nd Edition, 1990, Mc.<br/>Graw Hill.</li> </ol> |  |  |  |
| REFERENCE<br>BOOKS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <ol> <li>Electronic communications – Dennis Roody and Coolen, Prentice<br/>Hall of India, IV edition, 1995.</li> <li>Wayne Tomasi, Advanced electronics communication systems,<br/>fourth edition, Prentice Hall of India, 1998</li> <li>Dennis Roddy and Coolen,1995,<i>Electronics</i><br/><i>communications</i>, Prentice Hall of India IV Edition.</li> <li>Wayne Tomasi,1998 "<i>Advanced Electronics communication</i><br/><i>System</i>" 4<sup>th</sup>edition, Prentice Hall of India, 1998</li> <li>S. Salivahanan, N. Suersh Kumar &amp; A. Vallavaraj, 2009, Electronic<br/>Devices and Circuits, Tata McGraw-Hill Publishing Company Limited,<br/>New Delhi, Second Edition.</li> </ol>       |  |  |  |
| WEB SOURCES       1. <a href="https://www.geeksforgeeks.org/digital-electronics-logic-designtutorials/">https://www.geeksforgeeks.org/digital-electronics-logic-designtutorials/</a> WEB SOURCES       2. <a href="https://www.polytechnichub.com/difference-analog-instrumentsdigital-instruments/">https://www.polytechnichub.com/difference-analog-instrumentsdigital-instruments/</a> MEB SOURCES       3. <a href="http://nptel.iitm.ac.in/">http://nptel.iitm.ac.in/</a> MEB SOURCES       6. <a href="http://nptel.iitm.ac.in/">http://nptel.iitm.ac.in/</a> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |

# **<u>COURSE OUTCOMES:</u>** At the end of the course, the student will be able to:

| CO1 Discuss and compare the propagation of electromagnetic waves through sky and on            | K1, K5 |
|------------------------------------------------------------------------------------------------|--------|
| earth's surface Evaluate the energy and power radiated by the different types of               |        |
| antenna                                                                                        |        |
| <b>CO2</b> Compare and differentiate the methods of generation of microwaves analyze the       |        |
| propagation of microwaves through wave guides- discuss and compare the different               | K4     |
| methods of generation of microwaves                                                            |        |
| <b>CO3</b> Classify and compare the working of different radar systems- apply the principle of |        |
| radar in detecting locating, tracking, and recognizing objects of various kinds at             | K3     |
| considerable distances – discuss the importance of radar in military- elaborate and            | KJ     |
| compare the working of different picture tube                                                  |        |
| CO4 Classify, discuss and compare the different types of optical fiber and also to justify     | K1,    |
| the need of it-discover the use of optical fiber as wave guide                                 | K3     |
| CO5 Explain the importance of satellite communication in our daily life-distinguish            |        |
| between orbital and geostationary satellites elaborate the linking of satellites with          | K4     |
| ground station on the earth                                                                    |        |
| K1 - Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate;                       |        |

### MAPPING WITH PROGRAM OUTCOMES:

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | <b>PO7</b> | PO8 | PO9 | <b>PO10</b> |
|-----|-----|-----|-----|-----|-----|-----|------------|-----|-----|-------------|
| CO1 | 3   | 3   | 3   | 1   | 2   | 2   | 3          | 2   | 1   | 3           |
| CO2 | 3   | 3   | 3   | 1   | 2   | 2   | 3          | 2   | 1   | 3           |
| CO3 | 3   | 3   | 3   | 1   | 2   | 2   | 3          | 2   | 1   | 3           |
| CO4 | 3   | 3   | 3   | 1   | 2   | 2   | 3          | 2   | 1   | 3           |
| CO5 | 3   | 3   | 3   | 1   | 2   | 2   | 3          | 2   | 1   | 3           |

|     | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 | PSO6 | PSO7 | PSO8 | PSO9 | PSO10 |
|-----|------|------|------|------|------|------|------|------|------|-------|
| CO1 | 3    | 3    | 3    | 1    | 2    | 2    | 3    | 2    | 1    | 3     |
| CO2 | 3    | 3    | 3    | 1    | 2    | 2    | 3    | 2    | 1    | 3     |
| CO3 | 3    | 3    | 3    | 1    | 2    | 2    | 3    | 2    | 1    | 3     |
| CO4 | 3    | 3    | 3    | 1    | 2    | 2    | 3    | 2    | 1    | 3     |
| CO5 | 3    | 3    | 3    | 1    | 2    | 2    | 3    | 2    | 1    | 3     |

### **Elective – 3-A. ADVANCED OPTICS**

### I YEAR – II SEMESTER

| Subject<br>Code | Subject Name    | L | Т | Р | Credits | Inst. Hours | Marks |
|-----------------|-----------------|---|---|---|---------|-------------|-------|
|                 | ADVANCED OPTICS |   |   |   | 3       | 4           | 75    |

| Pre-Requisites                                                                                             |  |  |  |  |  |  |
|------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Knowledge of ray properties and wave nature of light                                                       |  |  |  |  |  |  |
| Learning Objectives                                                                                        |  |  |  |  |  |  |
| To know the concepts behind polarization and could pursue research work on application<br>aspects of laser |  |  |  |  |  |  |
| To impart an extensive understanding of fiber and non-linear optics                                        |  |  |  |  |  |  |

- > To study the working of different types of LASERS
- > To differentiate first and second harmonic generation
- > Learn the principles of magneto-optic and electro-optic effects and its applications

| UNITS                                               | Course Details                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| UNIT 1:<br>POLARIZATION<br>AND DOUBLE<br>REFRACTION | Classification of polarization – Transverse character of light waves –<br>Polarizer and analyzer – Malu's law – Production of polarized light –<br>Wire grid polarizer and the polaroid – Polarization by reflection –<br>Polarization by double refraction – Polarization by scattering – The<br>phenomenon of double refraction – Normal and oblique incidence –<br>Interference of polarized light: Quarter and half wave plates – Analysis of<br>polarized light – Optical activity |
| UNIT II:<br>LASERS                                  | Basic principles – Spontaneous and stimulated emissions – Components of<br>the laser – Resonator and lasing action – Types of lasers and its applications<br>– Solid state lasers – Ruby laser – Nd:YAG laser – gas lasers – He-Ne laser<br>– CO <sub>2</sub> laser – Chemical lasers – HCl laser – Semiconductor laser                                                                                                                                                                 |
| UNIT III:<br>FIBER OPTICS                           | Introduction – Total internal reflection – The optical fiber – Glass fibers –<br>The coherent bundle – The numerical aperture – Attenuation in optical<br>fibers – Single and multi-mode fibers – Pulse dispersion in multimode<br>optical fibers – Ray dispersion in multimode step index fibers –<br>Parabolicindex fibers – Fiber-optic sensors: precision displacement sensor<br>– Precision vibration sensor                                                                       |

| UNIT IV:       | Basic principles – Harmonic generation – Second harmonic generation –           |
|----------------|---------------------------------------------------------------------------------|
| NON-LINEAR     | Phase matching – Third harmonic generation – Optical mixing –                   |
| OPTICS         | Parametric generation of light – Self-focusing of light                         |
| UNIT V:        | Magneto-optical effects – Zeeman effect – Inverse Zeeman effect – Faraday       |
| MAGNETO-       | effect – Voigt effect – Cotton-mouton effect – Kerr magneto optic effect –      |
| OPTICS AND     | Electro-optical effects – Stark effect – Inverse stark effect – Electric double |
| ELECTRO-OPTICS | refraction – Kerr electro-optic effect – Pockels electro optic effect           |

|            | 1 D. D. Land 2017 Leasers and Nam. Lincon Ontion 2rd Edition North                    |  |  |  |  |  |  |
|------------|---------------------------------------------------------------------------------------|--|--|--|--|--|--|
|            | 1. B. B. Laud, 2017, Lasers and Non – Linear Optics, 3 <sup>rd</sup> Edition, New     |  |  |  |  |  |  |
|            | Age International (P) Ltd.                                                            |  |  |  |  |  |  |
|            | 2. AjoyGhatak, 2017, Optics, 6 <sup>th</sup> Edition, McGraw – Hill Education         |  |  |  |  |  |  |
|            | Pvt. Ltd.                                                                             |  |  |  |  |  |  |
| TEXT BOOKS | 3. William T. Silfvast, 1996, Laser Fundamentals Cambridge University Press, New York |  |  |  |  |  |  |
|            | 4. J. Peatros, Physics of Light and Optics, a good (and free!) electronic book        |  |  |  |  |  |  |
|            | 5. B. Saleh, and M. Teich, Fundamentals of Photonics, Wiley-                          |  |  |  |  |  |  |
|            | Interscience,                                                                         |  |  |  |  |  |  |
|            | 1. F. S. Jenkins and H. E. White, 1981, Fundamentals of Optics, (4th                  |  |  |  |  |  |  |
|            | Edition), McGraw – Hill International Edition.                                        |  |  |  |  |  |  |
|            | 2. Dieter Meschede, 2004, Optics, Light and Lasers, Wiley – VCH,                      |  |  |  |  |  |  |
| REFERENCE  | Varley GmbH.                                                                          |  |  |  |  |  |  |
| BOOKS      | 3. Lipson, S. G. Lipson and H. Lipson, 2011, Optical Physics, 4 <sup>th</sup>         |  |  |  |  |  |  |
|            | Edition, Cambridge University Press, New Delhi, 2011.                                 |  |  |  |  |  |  |
|            | 4. Y. B. Band, Light and Matter, Wiley and Sons (2006)                                |  |  |  |  |  |  |
|            | 5. R. Guenther, Modern Optics, Wiley and Sons (1990)                                  |  |  |  |  |  |  |

|             | 1. <u>https://www.youtube.com/watch?v=WgzynezPiyc</u>               |
|-------------|---------------------------------------------------------------------|
|             | 2. <u>https://www.youtube.com/watch?v=ShQWwobpW60</u>               |
| WED COLDCES | 3. <u>https://www.ukessays.com/essays/physics/fiber-optics-and-</u> |
| WEB SOURCES | itapplications.php                                                  |
|             | 4. <u>https://www.youtube.com/watch?v=0kEvr4DKGRI</u>               |
|             | 5. <u>http://optics.byu.edu/textbook.aspx</u>                       |

### At the end of the course, the student will be able to:

| CO1        | Discuss the transverse character of light waves and different polarization          |              |
|------------|-------------------------------------------------------------------------------------|--------------|
|            | phenomenon                                                                          | K1           |
| CO2        | Discriminate all the fundamental processes involved in laser devices and to analyze |              |
|            | the design and operation of the devices                                             | K2           |
| CO3        | Demonstrate the basic configuration of a fiber optic – communication system and     |              |
|            | advantages                                                                          | K3, K4       |
|            | advantages                                                                          | NJ, N4       |
|            |                                                                                     | K3, K4<br>K4 |
| CO4        |                                                                                     | K4           |
| CO4<br>CO5 | Identify the properties of nonlinear interactions of light and matter               | K4           |

### MAPPING WITH PROGRAM OUTCOMES:

|     | <b>PO1</b> | PO2 | PO3 | PO4 | PO5 | <b>PO6</b> | <b>PO7</b> | <b>PO8</b> | PO9 | <b>PO10</b> |
|-----|------------|-----|-----|-----|-----|------------|------------|------------|-----|-------------|
| CO1 | 3          | 3   | 3   | 2   | 3   | 3          | 3          | 3          | 3   | 3           |
| C02 | 3          | 3   | 3   | 2   | 3   | 3          | 3          | 3          | 3   | 3           |
| CO3 | 3          | 3   | 3   | 2   | 3   | 3          | 3          | 3          | 3   | 3           |
| CO4 | 3          | 3   | 3   | 3   | 3   | 3          | 3          | 3          | 3   | 3           |
| CO5 | 3          | 3   | 3   | 3   | 3   | 3          | 3          | 3          | 3   | 3           |

|     | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 | PSO6 | PSO7 | PSO8 | PSO9 | PSO10 |
|-----|------|------|------|------|------|------|------|------|------|-------|
| CO1 | 3    | 3    | 3    | 2    | 3    | 3    | 3    | 3    | 3    | 3     |
| CO2 | 3    | 3    | 3    | 2    | 3    | 3    | 3    | 3    | 3    | 3     |
| CO3 | 3    | 3    | 3    | 2    | 3    | 3    | 3    | 3    | 3    | 3     |
| CO4 | 3    | 3    | 3    | 3    | 3    | 3    | 3    | 3    | 3    | 3     |
| CO5 | 3    | 3    | 3    | 3    | 3    | 3    | 3    | 3    | 3    | 3     |

### Elective 3-B. NON LINEAR DYNAMICS

### I YEAR - II SEMESTER

| Subject<br>Code | Subject Name       | Category | L | Т | Р | Credits | Inst. Hours | Marks |
|-----------------|--------------------|----------|---|---|---|---------|-------------|-------|
|                 | NONLINEAR DYNAMICS | Elective |   |   |   | 3       | 4           | 75    |

| Pre-Requisites   |                                                                                                                |  |  |  |  |  |  |  |
|------------------|----------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
|                  | nerical methods and Differential equations, Fundamentals of linear and nonlinear waves, and munication systemS |  |  |  |  |  |  |  |
|                  | Learning Objectives                                                                                            |  |  |  |  |  |  |  |
| $\triangleright$ | To school the students about the analytical and numerical techniques of nonlinear                              |  |  |  |  |  |  |  |
| dyna             | mics.                                                                                                          |  |  |  |  |  |  |  |
| $\triangleright$ | To make the students understand the concepts of various coherent structures.                                   |  |  |  |  |  |  |  |
| $\triangleright$ | To train the students on bifurcations and onset of chaos.                                                      |  |  |  |  |  |  |  |
| $\triangleright$ | To educate the students about the theory of chaos and its characterization.                                    |  |  |  |  |  |  |  |
| $\triangleright$ | To make the students aware of the applications of solitons, chaos and fractals.                                |  |  |  |  |  |  |  |

| UNITS                                              | Course Details                                                                                                                                                                                                                                                                                   |
|----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| UNIT I:<br>GENERAL                                 | Linear waves-ordinary differential equations(ODEs)-Partial differential equations(PDEs)- Methods to solve ODEs and PDEs Numerical methods – Linear and Nonlinear oscillators-Nonlinear waves-Qualitative features                                                                                |
| UNIT II:<br>COHERENT<br>STRUCTURES                 | Linear and Nonlinear dispersive waves - Solitons – KdB equation – Basic<br>theory of KdB equation –Ubiquitous soliton equations – AKNS Method,<br>Backlund transformation, Hirotabilinearization method, Painleve analysis -<br>Perturbation methods- Solitons in Optical fibres - Applications. |
| UNIT III:<br>BIFURCATIONS<br>AND ONSET OF<br>CHAOS | One dimensional flows – Two dimensional flows – Phase plane – Limit cycles – Simple bifurcations – Discrete Dinamical system – Strange attractors – Routes to chaos.                                                                                                                             |
| UNIT IV:<br>FRACTALS                               | Self-similarity - Properties and examples of fractals - Fractal dimension -<br>Construction and properties of some fractals - Middle one third cantor set -<br>Koch curve - Sierpinski triangle – Julia set – Mandelbrot set - Applications<br>of fractals.                                      |

|              | Soliton based communication systems – Solition based computation –    |
|--------------|-----------------------------------------------------------------------|
| UNIT V       | Synchronization of chaos – Chaos based communication – Cryptography – |
| APPLICATIONS | Image processing – Stochastic – Resonance – Chaos based computation – |
|              | Time Series analysis.                                                 |

| 1. M.Lakshmanan and S.Rajasekar, Nonlinear Dyna                    | mics:                             |  |  |  |  |  |  |
|--------------------------------------------------------------------|-----------------------------------|--|--|--|--|--|--|
| Integrability, Chaos and Patterns.Springer, 2003.                  |                                   |  |  |  |  |  |  |
| 2. A.Hasegawa and Y.Kodama, Solitons in Optical                    |                                   |  |  |  |  |  |  |
| Communications. Oxford Press, 1995.                                |                                   |  |  |  |  |  |  |
| 3. Drazin, P. G. Nonlinear Systems. Cambridge Uni                  | versity Press,                    |  |  |  |  |  |  |
| <b>TEXT</b> 2012. ISBN: 9781139172455.                             | 2012. ISBN: 9781139172455.        |  |  |  |  |  |  |
| <b>BOOKS</b> 4. Wiggins, S. Introduction to Applied Nonlinear D    | ynamical                          |  |  |  |  |  |  |
| Systems and Chaos. Springer, 2003. ISBN: 978038700177              | 7.                                |  |  |  |  |  |  |
| 5. Strogatz, Steven H. Nonlinear Dynamics and Cha                  | os: With                          |  |  |  |  |  |  |
| Applications to Physics, Biology, Chemistry, and Engineer          | ring.                             |  |  |  |  |  |  |
| Westview Press, 2014. ISBN: 9780813349107.                         |                                   |  |  |  |  |  |  |
| 1. G.Drazin and R.S.Johnson. Solitons: An Introduc                 | tion.                             |  |  |  |  |  |  |
| Cambridge University Press, 1989.                                  | Cambridge University Press, 1989. |  |  |  |  |  |  |
| 2. M.Lakshmanan and K.Murali. Chaos in Nonlinea                    | r Oscillators.                    |  |  |  |  |  |  |
| World Scientific, 1989.                                            | World Scientific, 1989.           |  |  |  |  |  |  |
| <b>REFERENCE</b> 3. S.Strogatz. Nonlinear Dynamics and Chaos. Addi | son Wesley,                       |  |  |  |  |  |  |
| BOOKS 1995.                                                        |                                   |  |  |  |  |  |  |
| 4. Hao Bai-Lin, Chaos (World Scientidic, Singapore                 | e, 1984).                         |  |  |  |  |  |  |
| 5. Kahn, P. B., Mathematical Methods for Scientists                | & Engineers                       |  |  |  |  |  |  |
| (Wiley, NY, 1990)                                                  | C                                 |  |  |  |  |  |  |
| 1. https://www.digimat.in/nptel/courses/video/10810                | 06135/L06.html                    |  |  |  |  |  |  |
| 2. <u>http://digimat.in/nptel/courses/video/115105124/</u>         | L01.html                          |  |  |  |  |  |  |
| WEB 3 https://www.digimat.in/nptel/courses/video/10810             |                                   |  |  |  |  |  |  |
| SOURCES 4. http://complex.gmu.edu/neural/index.html                |                                   |  |  |  |  |  |  |
| 5. https://cnls.lanl.gov/External/Kac.php                          |                                   |  |  |  |  |  |  |

### At the end of the course, the student will be able to:

|     | Gain knowledge about the available analytical and numerical methods to solve various nonlinear systems.                                               | K1, K4    |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
|     | Understand the concepts of different types of coherent structures and their importance in science and technology.                                     | K2        |
| CO3 | Learn about simple and complex bifurcations and the routes to chaos                                                                                   | K1, K2    |
|     | Acquire knowledge about various oscillators, characterization of chaos and fractals.                                                                  | K1        |
|     | To analyze and evaluate the applications of solutions in telecommunication, applications of chaos in cryptography, computations and that of fractals. | K3,<br>K5 |

### **MAPPING WITH PROGRAM OUTCOMES:**

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | <b>PO7</b> | <b>PO8</b> | PO9 | PO10 |
|-----|-----|-----|-----|-----|-----|-----|------------|------------|-----|------|
| CO1 | 3   | 3   | 3   | 2   | 2   | 1   | 2          | 2          | 2   | 2    |
| CO2 | 3   | 2   | 2   | 2   | 2   | 2   | 2          | 2          | 2   | 2    |
| CO3 | 2   | 2   | 2   | 2   | 2   | 2   | 2          | 2          | 2   | 2    |
| CO4 | 2   | 2   | 2   | 2   | 2   | 1   | 2          | 2          | 2   | 2    |
| CO5 | 1   | 2   | 2   | 2   | 2   | 2   | 2          | 2          | 2   | 2    |

|     | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 | PSO6 | PSO7 | PSO8 | PSO9 | PSO10 |
|-----|------|------|------|------|------|------|------|------|------|-------|
| CO1 | 3    | 3    | 3    | 2    | 2    | 1    | 2    | 2    | 2    | 2     |
| CO2 | 3    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2     |
| CO3 | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2     |
| CO4 | 2    | 2    | 2    | 2    | 2    | 1    | 2    | 2    | 2    | 2     |
| CO5 | 1    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2     |

### ELECTIVE 3-C. PHYSICS OF NANO SCIENCE AND TECHNOLOGY

### I YEAR - II SEMSTER

| Subject<br>Code | Subject Name                              | Category | L | Т | Р | Credits | Inst.<br>Hours | Marks |
|-----------------|-------------------------------------------|----------|---|---|---|---------|----------------|-------|
|                 | PHYSICS OF NANO SCIENCE AND<br>TECHNOLOGY | Elective |   |   |   | 3       | 4              | 75    |

| Pre-Requisites                         |                                                                              |  |  |  |  |  |  |
|----------------------------------------|------------------------------------------------------------------------------|--|--|--|--|--|--|
| Basic knowledge in Solid State Physics |                                                                              |  |  |  |  |  |  |
| Learning Objectives                    |                                                                              |  |  |  |  |  |  |
| $\checkmark$                           | Physics of Nanoscience and Technology is concerned with the study, creation, |  |  |  |  |  |  |
| manip                                  | ulation and applications at nanometer scale.                                 |  |  |  |  |  |  |
| $\succ$                                | To provide the basic knowledge about nanoscience and technology.             |  |  |  |  |  |  |
| $\succ$                                | To learn the structures and properties of nanomaterials.                     |  |  |  |  |  |  |

 $\succ$  To acquire the knowledge about synthesis methods and characterization techniques and its applications.

| UNITS                                                       | Course Details                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| UNIT I:<br>FUNDAMENTALS OF<br>NANOSCIENCE AND<br>TECHNOLOGY | Fundamentals of NANO – Historical Perspective on Nanomaterial and<br>Nanotechnology – Classification of Nanomaterials – Metal and<br>Semiconductor Nanomaterials - 2D, 1D, 0D nanostructured materials<br>- Quantum dots – Quantum wires – Quantum wells - Surface effects of<br>nanomaterials.                                                                                                                                                   |
| UNIT II: PROPERTIES<br>OF NANOMATERIALS                     | Physical properties of Nanomaterials: Melting points, specific heat<br>capacity, and lattice constant - Mechanical behavior:Elastic properties<br>– strength - ductility - superplastic behavior - Optical properties: -<br>Surface Plasmon Resonance – Quantum size effects - Electrical<br>properties - Conductivity, Ferroelectrics and dielectrics - Magnetic<br>properties – super para magnetism – Diluted magnetic semiconductor<br>(DMS). |
| UNIT III: SYNTHESIS<br>AND FABRICATION                      | Physical vapour deposition - Chemical vapour deposition - sol-gel –<br>Wet deposition techniques - electrochemical deposition method –<br>Plasma arching - Electrospinning method - ball milling technique -<br>pulsed laser deposition - Nanolithography: photolithography –<br>Nanomanipulator.                                                                                                                                                 |
| UNIT IV:<br>CHARACTERIZATION<br>TECHNIQUES                  | Powder X-ray diffraction – X-ray photoelectron spectroscopy (XPS) -<br>UV-visible spectroscopy – Photoluminescence - Scanning electron<br>microscopy (SEM) - Transmission electron microscopy (TEM) -<br>Scanning probe microscopy (SPM) - Scanning tunneling microscopy<br>(STM) – Vibrating sample Magnetometer.                                                                                                                                |

| UNIT V:<br>APPLICATIONS OF<br>NANOMATERIALS | Sensors: Nanosensors based on optical and physical properties -<br>Electrochemical sensors – Nano-biosensors. Nano Electronics:<br>Nanobots - display screens - GMR read/write heads - Carbon Nanotube<br>Emitters – Photocatalytic application: Air purification, water<br>purification -Medicine: Imaging of cancer cells – biological tags - drug<br>delivery - photodynamic therapy - Energy: fuel cells - rechargeable                                                                                                                                                                                                                                             |
|---------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                             | batteries - supercapacitors - photovoltaics.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| TEXT BOOKS                                  | <ol> <li>A textbook of Nanoscience and Nanotechnology, Pradeep T., Tata<br/>McGraw-Hill Publishing Co. (2012).</li> <li>Principles of Nanoscience and Nanotechnology, M.A. Shah,<br/>Tokeer Ahmad, Narosa Publishing House Pvt Ltd., (2010).</li> <li>Introduction to Nanoscience and Nanotechnology, K. K.<br/>Chattopadhyay and A.N. Banerjee, PHI Learning Pvt. Ltd., New<br/>Delhi, (2012).</li> <li>Nanostructured Materials and Nanotechnology, Hari Singh Nalwa,<br/>Academic Press, (2002).</li> <li>Nanotechnology and Nanoelectronics, D.P. Kothari,<br/>V. Velmurugan and Rajit Ram Singh, Narosa Publishing House<br/>Pvt.Ltd, New Delhi. (2018)</li> </ol> |
| REFERENCE<br>BOOKS                          | <ol> <li>Nanostructures and Nanomaterials – HuozhongGao – Imperial<br/>College Press (2004).</li> <li>Richard Booker and Earl Boysen, (2005) Nanotechnology, Wiley<br/>Publishing Inc. USA</li> <li>Nano particles and Nano structured films; Preparation,<br/>Characterization and Applications, J.H.Fendler John Wiley and Sons.<br/>(2007)</li> <li>Textbook of Nanoscience and Nanotechnology, B.S.Murty, et al.,<br/>Universities Press. (2012)</li> <li>The Nanoscope (Encyclopedia of Nanoscience and<br/>Nanotechnology), Dr. Parag Diwan and Ashish Bharadwaj (2005) Vol.<br/>IV - Nanoelectronics Pentagon Press, New Delhi.</li> </ol>                       |

|             | <ol> <li>www.its.caltec.edu/feyman/plenty.html</li> <li>http://www.library.ualberta.ca/subject/nanoscience/guide/index.</li> </ol> |
|-------------|------------------------------------------------------------------------------------------------------------------------------------|
| WEB SOURCES | <u>m</u>                                                                                                                           |
| WEDSUCKCES  | 3. <u>http://www.understandingnano.com</u>                                                                                         |
|             | 4. <u>http://www.nano.gov</u>                                                                                                      |
|             | 5. <u>http://www.nanotechnology.com</u>                                                                                            |

#### At the end of the course, the student will be able to:

| CO1                                                                      | Understand the basic of nanoscience and explore the different types of nanomaterials and should comprehend the surface effects of the nanomaterials. | K1, K2 |  |  |  |  |
|--------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--|--|--|--|
| CO2                                                                      | Explore various physical, mechanical, optical, electrical and magnetic properties nanomaterials.                                                     | K1     |  |  |  |  |
| CO3                                                                      | Understand the process and mechanism of synthesis and fabrication of nanomaterials.                                                                  | K2, K3 |  |  |  |  |
| CO4                                                                      | Analyze the various characterization of Nano-products through diffraction, spectroscopic, microscopic and other techniques.                          | K4     |  |  |  |  |
| CO5                                                                      | Apply the concepts of nanoscience and technology in the field of sensors, robotics, purification of air and water and in the energy devices.         | K3     |  |  |  |  |
| K1 - Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate; |                                                                                                                                                      |        |  |  |  |  |

### MAPPING WITH PROGRAM OUTCOMES:

|     | PO1 | PO2 | PO3 | PO4 | PO5 | <b>PO6</b> | <b>PO7</b> | <b>PO8</b> | PO9 | <b>PO10</b> |
|-----|-----|-----|-----|-----|-----|------------|------------|------------|-----|-------------|
| CO1 | 3   | 3   | 3   | 2   | 1   | 1          | 3          | 3          | 3   | 3           |
| CO2 | 3   | 3   | 3   | 2   | 1   | 1          | 3          | 3          | 3   | 3           |
| CO3 | 3   | 3   | 2   | 2   | 1   | 1          | 3          | 3          | 3   | 3           |
| CO4 | 3   | 3   | 3   | 2   | 1   | 1          | 3          | 3          | 3   | 3           |
| CO5 | 3   | 3   | 2   | 2   | 1   | 1          | 3          | 3          | 3   | 3           |

|            | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 | PSO6 | PSO7 | PSO8 | PSO9 | PSO10 |
|------------|------|------|------|------|------|------|------|------|------|-------|
| CO1        | 3    | 3    | 3    | 2    | 1    | 1    | 3    | 3    | 3    | 3     |
| CO2        | 3    | 3    | 3    | 2    | 1    | 1    | 3    | 3    | 3    | 3     |
| CO3        | 3    | 3    | 2    | 2    | 1    | 1    | 3    | 3    | 3    | 3     |
| <b>CO4</b> | 3    | 3    | 3    | 2    | 1    | 1    | 3    | 3    | 3    | 3     |
| CO5        | 3    | 3    | 2    | 2    | 1    | 1    | 3    | 3    | 3    | 3     |

### Elective -4-A. MICROPROCESSOR 8085 AND MICROCONTROLLER 8051

## I YEAR – SECOND SEMESTER

| Subject<br>Code | Subject Name                                    | Category | L | Т | Р | Credits | Inst. Hours | Marks |
|-----------------|-------------------------------------------------|----------|---|---|---|---------|-------------|-------|
|                 | MICROPROCESSOR 8085 AND<br>MICROCONTROLLER 8051 | ELECTIVE |   |   |   | 3       | 4           | 75    |

### **Pre-Requisites**

| IXIIC | micuze                | of number systems and binary operations                                           |
|-------|-----------------------|-----------------------------------------------------------------------------------|
|       |                       | Learning Objectives                                                               |
|       | $\blacktriangleright$ | To provide an understanding of the architecture and functioning of microprocessor |
|       | 8085.                 | A and to the methods of interfacing I/O devices and memory to microprocessor      |
|       | $\succ$               | To introduce 8085A programming and applications and the architecture and          |
|       | instru                | ction sets of microcontroller 8051                                                |

| UNITS                                                                                 | Course Details                                                                                                                                                                                                                                                                                                                                                                          |
|---------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| UNIT I<br>8085 ARCHITECTURE<br>AND PROGRAMMING                                        | Functional Building Blocks of a Processor - 8085 Pinout - Hardware<br>Architecture, Bus structure- Memory organization - data transfer<br>concepts–Interrupts- Instruction set- Addressing Modes-Assembly<br>Language Programs- subroutines- Timing Diagrams.                                                                                                                           |
| UNIT II:<br>MEMORY I/O<br>PERIPHERAL<br>DEVICES<br>INTERFACING<br>AND<br>APPLICATIONS | Memory Interface – memory mapped I/O & I/O mapped I/O-<br>Generating Control Signals – Interfacing 2KX8 EPROM – 2KX8<br>RAM -Interfacing I/O ports to 8085-Hand shake signals - PPI8255-<br>Interfacing 8255 to 8085-LED Interface- seven segment display<br>interface - Programmable DMA controller- Programmable counter<br>/interval timer.                                          |
| UNIT III:<br>8051<br>MICROCONTROLLER                                                  | Introduction – Features of 8051 - Pin-out of 8051- architecture -<br>PSW and Flag Bits, Register Banks and Stack, IO Ports Usage -<br>Special Function Registers and their uses -Interrupt Structure-<br>Interrupt Enable Register in 8051-Interrupt Priority Register in 8051-<br>Software Generated Interrupts Register -Internal memory (RAM &<br>ROM) Organization-External Memory. |
| UNIT IV<br>8051 INSTRUCTION                                                           | Instruction Set and Addressing modes: Data transfer instructions -<br>Instructions to Access external data memory, external ROM /<br>program memory, PUSH and POP instructions, Data exchange<br>instructions – Logical instructions: byte and bit level logical                                                                                                                        |

| SET AND ASSEMBLY                            | operations, Rotate and swap operations – Arithmetic instructions:                                                                                                                                                                                                                                                                                                                         |
|---------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| LANGUAGE                                    | Flags, Incrementing and decrementing, Addition, Subtraction,                                                                                                                                                                                                                                                                                                                              |
| PROGRAMMING                                 | Multiplication and division, Decimal arithmetic - Jump and CALL                                                                                                                                                                                                                                                                                                                           |
|                                             | instructions: Types of Jumps - Subroutines – Assembly Language                                                                                                                                                                                                                                                                                                                            |
|                                             | Programming.                                                                                                                                                                                                                                                                                                                                                                              |
| UNIT V:<br>8051 INTERFACING<br>APPLICATIONS | Basics of Data acquisition systems – Sensors and Transducers –<br>examples- Multiplexed Seven segment display interface – Wave<br>form generation by interfacing DAC – Interfacing ADC –Stepper<br>motor interface - Measurement of electrical quantities (voltage and<br>current) – Measurement of Temperature and Strain - Interrupt<br>programming and serial communication with 8051. |

|            | <ol> <li>A. NagoorKani, Microprocessors &amp; Microcontrollers, RBA<br/>Publications<br/>(2009).</li> </ol>                    |  |  |  |  |  |  |
|------------|--------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
|            | <ul> <li>(2009).</li> <li>2. A. P. Godse and D. A. Godse, Microprocessors, Technical<br/>Publications, Pune (2009).</li> </ul> |  |  |  |  |  |  |
|            | 3. Ramesh Gaonkar, Microprocessor                                                                                              |  |  |  |  |  |  |
|            | Architecture, Programming and Applications with 8085,                                                                          |  |  |  |  |  |  |
|            | Penram International Publishing (2013).                                                                                        |  |  |  |  |  |  |
| TEXT BOOKS | 4. B. Ram, Fundamentals of Microprocessors &                                                                                   |  |  |  |  |  |  |
| ILAI DOORS | Microcontrollers, DhanpatRai publications New Delhi (2016).                                                                    |  |  |  |  |  |  |
|            | 5. V. Vijayendran, 2005, Fundamentals of Microprocessor-<br>8085", 3rd Edition S.Visvanathan Pvt, Ltd.                         |  |  |  |  |  |  |
|            | 6. 8051 Micro controller Architecture, Programming and                                                                         |  |  |  |  |  |  |
|            | Application by Kenneth .J. AyalaSecond Edition- PRI.                                                                           |  |  |  |  |  |  |
|            | 7. 8051 Micro controller and Embedded System by Muhammad                                                                       |  |  |  |  |  |  |
|            | Ali Mazidi and Janice Gillispi Mazidi – Pearson Education                                                                      |  |  |  |  |  |  |
|            | Publication – 2006                                                                                                             |  |  |  |  |  |  |

|                        | 1. Douglas V. Hall, Microprocessors and Interfacing              |  |  |  |  |  |  |
|------------------------|------------------------------------------------------------------|--|--|--|--|--|--|
|                        | programming and Hardware, Tata Mc Graw Hill Publications         |  |  |  |  |  |  |
|                        | (2008)                                                           |  |  |  |  |  |  |
|                        | 2. Barry B. Brey, 1995, The Intel Microprocessors 8086/8088,     |  |  |  |  |  |  |
|                        | 80186, 80286, 80386 and 80486, 3rd Edition, Prentice- Hall of    |  |  |  |  |  |  |
|                        | India, New Delhi.                                                |  |  |  |  |  |  |
| <b>REFERENCE BOOKS</b> | 3. J. Uffrenbeck, "The 8086/8088 Family-Design, Programming      |  |  |  |  |  |  |
|                        | and Interfacing, Software, Hardware and Applications", Prentice- |  |  |  |  |  |  |
|                        | Hall of India, New Delhi.                                        |  |  |  |  |  |  |
|                        | 4. W. A.Tribel, Avtar Singh, "The 8086/8088                      |  |  |  |  |  |  |
|                        | Microprocessors:                                                 |  |  |  |  |  |  |
|                        | Programming, Interfacing, Software, Hardware and                 |  |  |  |  |  |  |
|                        | Applications", PrenticeHall of India, New Delhi.                 |  |  |  |  |  |  |

| Γ       |                                                                        |
|---------|------------------------------------------------------------------------|
|         | 1. <u>https://www.tutorialspoint.com/microprocessor/microprocessor</u> |
|         | <u>_8085_architectu re.html</u>                                        |
|         | 2. <u>http://www.electronicsengineering.nbcafe.in/peripheral-</u>      |
| WEB     | mapped-io-interfacing/                                                 |
| SOURCES | 3. <u>https://www.geeksforgeeks.org/programmable-peripheral-</u>       |
|         | interface-8255/                                                        |
|         | 4. <u>http://www.circuitstoday.com/8051-microcontroller</u>            |
|         | 5. <u>https://www.elprocus.com/8051-assembly-language-</u>             |
|         | programming/                                                           |

## At the end of the course, the student will be able to:

| CO1        | Gain knowledge of architecture and working of 8085 microprocessor.           | K1     |
|------------|------------------------------------------------------------------------------|--------|
| CO2        | Get knowledge of architecture and working of 8051 Microcontroller.           | K1     |
| CO3        | Be able to write simple assembly language programs for 8085A microprocessor. | K2, K3 |
| <b>CO4</b> | Able to write simple assembly language programs for 8051 Microcontroller.    | K3, K4 |
| CO5        | Understand the different applications of microprocessor and microcontroller. | K3,K 5 |
| K1 - Rei   | nember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate;            |        |

### MAPPING WITH PROGRAM OUTCOMES:

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|
| CO1 | 2   | 3   | 3   | 3   | 3   | 1   | 1   | 1   | 1   | 1    |
| CO2 | 2   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1    |
| CO3 | 3   | 3   | 3   | 3   | 3   | 1   | 1   | 1   | 1   | 1    |
| CO4 | 3   | 3   | 3   | 3   | 3   | 1   | 1   | 1   | 1   | 1    |
| CO5 | 3   | 3   | 3   | 3   | 3   | 1   | 1   | 1   | 1   | 1    |

|            | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 | PSO6 | PSO7 | PSO8 | PSO9 | PSO10 |
|------------|------|------|------|------|------|------|------|------|------|-------|
| <b>CO1</b> | 2    | 3    | 3    | 3    | 3    | 1    | 1    | 1    | 1    | 1     |
| CO2        | 2    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1     |
| CO3        | 3    | 3    | 3    | 3    | 3    | 1    | 1    | 1    | 1    | 1     |
| CO4        | 3    | 3    | 3    | 3    | 3    | 1    | 1    | 1    | 1    | 1     |
| CO5        | 3    | 3    | 3    | 3    | 3    | 1    | 1    | 1    | 1    | 1     |

### **Elective – 4-B. MATERIALS SCIENCE**

### I YEAR – SECOND SEMESTER

| Subject<br>Code | Subject Name      | Category | L | Т | Р | Credits | Inst. Hours | Marks |
|-----------------|-------------------|----------|---|---|---|---------|-------------|-------|
|                 | MATERIALS SCIENCE | ELECTIVE |   |   |   | 3       | 4           | 75    |

### **Pre-Requisites**

. Basic knowledge on different types of materials

Г

#### Learning Objectives

- > To gain knowledge on optoelectronic materials
- > To learn about ceramic processing and advanced ceramics
- > To understand the processing and applications of polymeric materials
- To gain knowledge on the fabrication of composite materials
- To learn about shape memory alloys, metallic glasses and nanomaterials

| UNIT I:<br>OPTOELECTRONIC<br>MATERIALS | and recombination – optical absorption, loss and gain. Optical processes in quantum structures: Inter-band and intra-band transitions Organic semiconductors. Light propagation in materials – Electro-optic effect and modulation, electro-absorption modulation – exciton quenching.                                      |
|----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| UNIT II<br>CERAMIC<br>MATERIALS        | Ceramic processing: powder processing, milling and sintering – structural ceramics: zirconia, almina, silicon carbide, tungsten carbide – electronic ceramics – refractories – glass and glass ceramics                                                                                                                     |
| UNIT III<br>POLYMERIC<br>MATERIALS     | Polymers and copolymers – molecular weight measurement – synthesis:<br>chain growth polymerization – polymerization techniques – glass transition<br>temperature and its measurement – viscoelasticity – polymer processing<br>techniques – applications: conducting polymers, biopolymers and high<br>temperature polymers |
| UNIT IV<br>COMPOSITE<br>MATERIALS      | Particle reinforced composites – fiber reinforced composites – mechanical behavior – fabrication methods of polymer matrix composites and metal matrix composites – carbon/carbon composites:fabrication and applications.                                                                                                  |

| TEXT BOOKS         | <ol> <li>Jasprit Singh, Electronic and optoelectronic properties of<br/>semiconductor structures, Cambridge University Press, 2007</li> <li>P. K. Mallick. Fiber-Reinforced Composites. CRC Press, 2008.</li> <li>V. Raghavan, 2003, Materials Science and Engineering, 4<sup>th</sup> Edition,<br/>Prentice- Hall India, New Delhi(For units 2,3,4 and 5)</li> <li>G.K. Narula, K.S. Narula and V.K. Gupta, 1988, Materials Science,<br/>Tata McGraw-Hill</li> <li>M. Arumugam, 2002, Materials Science, 3<sup>rd</sup> revised Edition, Anuratha<br/>Agencies</li> </ol>                                                                                                                                                                        |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| REFERENCE<br>BOOKS | <ol> <li>B. S. Murty, P. Shankar, B. Raj, B. B. Rath and J. Murday. Textbook<br/>of Nanoscience and Nanotechnology. Springer- Verlag, 2012.</li> <li>K. Yamauchi, I. Ohkata, K. Tsuchiya and S. Miyazaki (Eds). Shape<br/>Memory and Super Elastic Alloys: Technologies and Applications, Wood<br/>head Publishing Limited, 2011.</li> <li>Lawrence H. VanVlack, 1998. Elements of Materials Science and<br/>Engineering, 6th Edition, Second ISE reprint, Addison-Wesley.</li> <li>H. Iabch and H. Luth, 2002, Solid State Physics – An Introduction to<br/>Principles of Materials Science, 2nd Edition, Springer.</li> <li>D. Hull &amp; T. W. Clyne, An introduction to composite materials,<br/>Cambridge University Press, 2008.</li> </ol> |
| WEB<br>SOURCES     | <ol> <li><u>https://onlinecourses.nptel.ac.in/noc20_mm02/preview</u></li> <li><u>https://nptel.ac.in/courses/112104229</u></li> <li><u>https://archive.nptel.ac.in/courses/113/105/113105081</u></li> <li><u>https://nptel.ac.in/courses/113/105/113105025/</u></li> <li><u>https://eng.libretexts.org/Bookshelves/Materials_Science/Supplemental_Modules_(Materials_Science)/Electronic_Properties/Lattice_Vibrations</u></li> </ol>                                                                                                                                                                                                                                                                                                             |

### At the end of the course, the student will be able to:

| C01                                                                      | Acquire knowledge on optoelectronic materials                                | K1     |  |  |  |  |  |
|--------------------------------------------------------------------------|------------------------------------------------------------------------------|--------|--|--|--|--|--|
| CO2 Be able to prepare ceramic materials                                 |                                                                              |        |  |  |  |  |  |
| CO3                                                                      | Be able to understand the processing and applications of polymeric materials | K2, K3 |  |  |  |  |  |
| CO4                                                                      | Be aware of the fabrication of composite materials                           | K5     |  |  |  |  |  |
| CO5                                                                      | Be knowledgeable of shape memory alloys, metallic glasses and nanomaterials  | K1     |  |  |  |  |  |
| K1 - Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate; |                                                                              |        |  |  |  |  |  |

### MAPPING WITH PROGRAM OUTCOMES:

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | <b>PO7</b> | PO8 | <b>PO9</b> | PO10 |
|-----|-----|-----|-----|-----|-----|-----|------------|-----|------------|------|
| CO1 | 2   | 3   | 3   | 2   | 2   | 2   | 2          | 1   | 2          | 3    |
| CO2 | 2   | 3   | 3   | 2   | 2   | 2   | 2          | 1   | 2          | 2    |
| CO3 | 2   | 3   | 2   | 2   | 2   | 2   | 2          | 2   | 2          | 2    |
| CO4 | 1   | 3   | 2   | 3   | 2   | 3   | 2          | 2   | 2          | 2    |
| CO5 | 2   | 3   | 2   | 2   | 2   | 2   | 2          | 2   | 2          | 2    |

|     | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 | PSO6 | PSO7 | PSO8 | PSO9 | PSO10 |
|-----|------|------|------|------|------|------|------|------|------|-------|
| CO1 | 2    | 3    | 3    | 2    | 2    | 2    | 2    | 1    | 2    | 3     |
| CO2 | 2    | 3    | 3    | 2    | 2    | 2    | 2    | 1    | 2    | 2     |
| CO3 | 2    | 3    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2     |
| CO4 | 1    | 3    | 2    | 3    | 2    | 3    | 2    | 2    | 2    | 2     |
| CO5 | 2    | 3    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2     |

## Elective 4-C.CHARACTERIZATONI YEAR – SECOND SEMESTEROF MATERIALSOF MATERIALS

| Subject<br>Code | Subject Name                    | Category | L | Т | Р | Credits | Inst. Hours | Marks |
|-----------------|---------------------------------|----------|---|---|---|---------|-------------|-------|
|                 | CHARACTERIZATON OF<br>MATERIALS | ELECTIVE |   |   |   | 3       | 4           | 75    |

### **Pre-Requisites**

Fundamentals of Heat and Thermodynamics, Basics of Optical systems, Microscopic systems, Electrical measurements and Fundamentals of Spectroscopy.

### **Learning Objectives**

To make the students learn some important thermal analysis techniques namely TGA, DTA, DSC and TMA.

 $\succ$  To make the students understand the theory of image formation in an optical microscope and to introduce other specialized microscopic techniques.

To make the students learn and understand the principle of working of electron microscopes and scanning probe microscopes.

To make the students understand some important electrical and optical characterization techniques for semiconducting materials.

 $\succ$  To introduce the students the basics of x-ray diffraction techniques and some important spectroscopic techniques.

| UNITS                             | Course details                                                                                                                                                                                                                                                                                                                                                                                            |
|-----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                   | Introduction – thermogravimetric analysis (TGA) – instrumentation –                                                                                                                                                                                                                                                                                                                                       |
| UNIT I                            | determination of weight loss and decomposition products – differential                                                                                                                                                                                                                                                                                                                                    |
| THERMAL                           | thermal analysis (DTA)- cooling curves - differential scanning                                                                                                                                                                                                                                                                                                                                            |
| ANALYSIS                          | calorimetry (DSC) - instrumentation - specific heat capacity                                                                                                                                                                                                                                                                                                                                              |
|                                   | measurements – determination of thermomechanical parameters.                                                                                                                                                                                                                                                                                                                                              |
| UNIT II<br>MICROSCOPIC<br>METHODS | Optical Microscopy: optical microscopy techniques – Bright field<br>optical microscopy – Dark field optical microscopy – Dispersion<br>staining microscopy - phase contrast microscopy –differential<br>interference contrast microscopy - fluorescence microscopy - confocal<br>microscopy - digital holographic microscopy - oil immersion<br>objectives - quantitative metallography - image analyzer. |
| UNIT III ELECTRON                 | SEM, EDAX, EPMA, TEM: working principle and Instrumentation –                                                                                                                                                                                                                                                                                                                                             |
| MICROSCOPY AND                    | sample preparation –Data collection, processing and analysis- Scanning                                                                                                                                                                                                                                                                                                                                    |
| SCANNING PROBE                    | tunnelingmicroscopy (STEM) - Atomic force microscopy (AFM) -                                                                                                                                                                                                                                                                                                                                              |
| MICROSCOPY                        | Scanning new field optical microscopy.                                                                                                                                                                                                                                                                                                                                                                    |

| UNIT I<br>ELECTRI<br>METHODS<br>OPTICA<br>CHARACTER<br>UNIT<br>X-RAY A<br>SPECTROS<br>METHO | CAL a<br>AND S<br>AL C<br>ISATION i<br>A<br>ND<br>COPIC<br>DS -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Two probe and four probe methods- van der Pauw method – Hall probe<br>and measurement – scattering mechanism – C-V characteristics –<br>Schottky barrier capacitance – impurity concentration – electrochemical<br>C-V profiling – limitations. Photoluminescence – light – matter<br>interaction – instrumentation – electroluminescence – instrumentation –<br>Applications.<br>Principles and instrumentation for UV-Vis-IR, FTIR spectroscopy,<br>Raman spectroscopy, ESR, NMR, NQR, XPS, AES and SIMSproton<br>induced X-ray Emission spectroscopy (PIXE) –Rutherford Back<br>Scattering (RBS) analysis-application - Powder diffraction -<br>Powder diffractometer -interpretation of diffraction patterns - indexing<br>phase identification - residual stress analysis - Particle size, texture<br>tudies - X-ray fluorescence spectroscopy - uses. |  |  |  |  |
|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| TEXT<br>BOOKS                                                                               | semico<br>2. J. A<br>Applie<br>3. Lav<br>princip<br>4. D.<br>Limite<br>5. Li,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <ul> <li>A. Stradling and P. C. Klipstain. Growth and Characterization of<br/>onductors. Adam Hilger, Bristol, 1990.</li> <li>A. Belk. Electron microscopy and microanalysis of crystalline materials.<br/>d Science Publishers, London, 1979.</li> <li>wrence E. Murr. Electron and Ion microscopy and Microanalysis<br/>oles and Applications. Marcel Dekker Inc., New York, 1991</li> <li>Kealey and P. J. Haines. Analytical Chemistry. Viva Books Private<br/>d, New Delhi, 2002.</li> <li>Lin, Ashok Kumar Materials Characterization Techniques Sam Zhang;<br/>Press,(2008).</li> </ul>                                                                                                                                                                                                                                                              |  |  |  |  |
| REFERENCE<br>BOOKS                                                                          | <ol> <li>Cullity, B.D., and Stock, R.S., "Elements of X-Ray Diffraction<br/>PrenticeHall, (2001).</li> <li>Murphy, Douglas B, Fundamentals of Light Microscopy and Electron<br/>Imaging, Wiley-Liss, Inc. USA, (2001).</li> <li>Tyagi, A.K., Roy, Mainak, Kulshreshtha, S.K., and Banerjee, S., Advance<br/>Techniques for Materials Characterization, Materials Science Foundation<br/>(monograph series), Volumes 49 – 51, (2009). Volumes 49 – 51, (2009).</li> <li>Wendlandt, W.W., Thermal Analysis, John Wiley &amp; Sons, (1986).</li> <li>Wachtman, J.B., Kalman, Z.H., Characterization of Material<br/>ButterworthHeinemann, (1993)</li> </ol> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |
| WEB<br>SOURCES                                                                              | 1. <u>htt</u><br>2. <u>htt</u><br>3. <u>htt</u><br>4. <u>htt</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ps://cac.annauniv.edu/uddetails/udpg_2015/77.%20Mat%20Sci(AC).pdf<br>p://www.digimat.in/nptel/courses/video/113106034/L11.html<br>ps://nptel.ac.in/courses/104106122<br>ps://nptel.ac.in/courses/118104008<br>ps://www.sciencedirect.com/journal/materials-characterization                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |

### At the end of the course, the student will be able to:

|        | Describe the TGA, DTA, DSC and TMA thermal analysis techniques and make interpretation of the results.                           | K1, K3    |
|--------|----------------------------------------------------------------------------------------------------------------------------------|-----------|
|        | The concept of image formation in Optical microscope, developments in other specialized microscopes and their applications.      | K2        |
| CO3    | The working principle and operation of SEM, TEM, STM and AFM.                                                                    | K2, K3    |
|        | Electrochemical. Photoluminescence and electroluminescence experimental                                                          | K3,<br>K4 |
|        | The theory and experimental procedure for x- ray diffraction and some important spectroscopic techniques and their applications. | K4,K5     |
| K1 - R | Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate;                                                              |           |

### MAPPING WITH PROGRAM OUTCOMES:

|            | PO1 | PO2 | PO3 | PO4 | PO5 | <b>PO6</b> | <b>PO7</b> | PO8 | PO9 | <b>PO10</b> |
|------------|-----|-----|-----|-----|-----|------------|------------|-----|-----|-------------|
| CO1        | 3   | 3   | 3   | 2   | 2   | 2          | 2          | 2   | 2   | 3           |
| CO2        | 3   | 3   | 3   | 2   | 2   | 2          | 2          | 2   | 2   | 2           |
| CO3        | 3   | 3   | 2   | 2   | 2   | 3          | 2          | 2   | 2   | 2           |
| <b>CO4</b> | 2   | 2   | 2   | 3   | 2   | 3          | 2          | 2   | 2   | 2           |
| CO5        | 2   | 2   | 2   | 2   | 2   | 2          | 3          | 2   | 2   | 2           |

|     | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 | PSO6 | PSO7 | PSO8 | PSO9 | PSO10 |
|-----|------|------|------|------|------|------|------|------|------|-------|
| CO1 | 3    | 3    | 3    | 2    | 2    | 2    | 2    | 2    | 2    | 3     |
| CO2 | 3    | 3    | 3    | 2    | 2    | 2    | 2    | 2    | 2    | 2     |
| CO3 | 3    | 3    | 2    | 2    | 2    | 3    | 2    | 2    | 2    | 2     |
| CO4 | 2    | 2    | 2    | 3    | 2    | 3    | 2    | 2    | 2    | 2     |
| CO5 | 2    | 2    | 2    | 2    | 2    | 2    | 3    | 2    | 2    | 2     |

### **ELECTIVE 5-A. SPECTROSCOPY**

### II YEAR – THIRD SMESTER

| Subject<br>Code | Subject Name | Category | L | Т | Р | Credits | Inst. Hours | Marks |
|-----------------|--------------|----------|---|---|---|---------|-------------|-------|
|                 | SPECTROSCOPY | Elective |   |   |   | 3       | 5           | 75    |

#### **Pre-Requisites**

Thorough understanding of electromagnetic spectrum, mathematical abilities, knowledge of molecules, their structure, bond nature, physical and chemical behaviour

### **Learning Objectives**

- > To comprehend the theory behind different spectroscopic methods
- To know the working principles along with an overview of construction of different types of spectrometers involved
- > To explore various applications of these techniques in R &D.
- Apply spectroscopic techniques for the qualitative and quantitative analysis of various chemical compounds.
- Understand this important analytical tool

### **UNIT I: MICROWAVE SPECTROSCOPY**

Rotational spectra of diatomic molecules - Rigid Rotor (Diatomic Molecules)-reduced mass – rotational constant - Effect of isotopic substitution - Non rigid rotator – centrifugal distortion constant- Intensity of Spectral Lines- Polyatomic molecules – linear – symmetric asymmetric top molecules - Instrumentation techniques – block diagram -Information Derived from Rotational Spectra - Problems.

### **UNIT II: INFRA-RED SPECTROSCOPY**

Vibrations of simple harmonic oscillator – zero-point energy- Anharmonic oscillator – fundamentals, overtones and combinations- Diatomic Vibrating Rotator- PR branch – PQR branch- Fundamental modes of vibration of  $H_2O$  and  $CO_2$  -Introduction to application of vibrational spectra- IR Spectrophotometer Instrumentation (Double Beam Spectrometer) – Fourier Transform Infrared Spectroscopy - Interpretation of vibrational spectra – Simple applications.

### **UNIT III: RAMAN SPECTROSCOPY**

Theory of Raman Scattering - Classical theory – molecular polarizability – polarizability ellipsoid - Quantum theory of Raman effect - rotational Raman spectra of linear molecule - symmetric top molecule – Stokes and anti-stokes line- SR branch -Raman activity of H<sub>2</sub>O and  $CO_2$  -Mutual exclusion principle- determination of N<sub>2</sub>O structure -Instrumentation technique and block diagram -structure determination of planar and non-planar molecules using IR and Raman techniques - FT Raman spectroscopy- Surface Enhanced Raman Spectroscopy.

### **UNIT IV: RESONANCE SPECTROSCOPY**

Nuclear and Electron spin- Interaction with magnetic field - Population of Energy levels -Larmor precession- Relaxation times - Double resonance- Chemical shift and its measurement - NMR of Hydrogen nuclei - Indirect Spin -Spin Interaction – interpretation of simple organic molecules - Instrumentation techniques of NMR spectroscopy – NMR in Chemical industries- MRI Scan

**Electron Spin Resonance**: Basic principle –Total Hamiltonian (Direct Dipole-Dipole interaction and Fermi Contact Interaction) – Hyperfine Structure (Hydrogen atom ) – ESR Spectra of Free radicals –g-factors – Instrumentation - Medical applications of ESR

### UNIT V: UV SPECTROSCOPY

Origin of UV spectra - Laws of absorption – Lambert Beer law - molar absorptivity – transmittance and absorbance - Color in organic compounds- Absorption by organic Molecule -Chromophores -Effect of conjugation on chromophores - Choice of Solvent and Solvent effect - Absorption by inorganic systems - Instrumentation - double beam UV-Spectrophotometer -Simple applications

### TEXT BOOKS

- 1. C N Banwell and E M McCash, 1994, Fundamentals of Molecular Spectroscopy, 4th Edition, Tata McGraw–Hill, New Delhi.
- 2. G Aruldhas, 1994, Molecular Structure and Molecular Spectroscopy, Prentice–Hall of India, New Delhi.
- 3. D.N. Satyanarayana, 2001, *Vibrational Spectroscopy and Applications*, New Age International Publication.
- 4. B.K. Sharma, 2015, Spectroscopy, Goel Publishing House Meerut.
- 5. Kalsi.P.S, 2016, Spectroscopy of Organic Compounds (7<sup>th</sup> Edition), New Age International Publishers

### **REFERENCE BOOKS**

- 1. J L McHale, 2008, Molecular Spectroscopy, Pearson Education India, New Delhi.
- 2. J M Hollas, 2002, Basic Atomic and Molecular Spectroscopy, Royal Society of Chemistry, RSC, Cambridge.
- 3. B. P. Straughan and S. Walker, 1976, Spectroscopy Vol. I, Chapman and Hall, New York.
- 4. K. Chandra, 1989, Introductory Quantum Chemistry, Tata McGraw Hill, New Delhi.
- 5. Demtroder. W, Laser Spectroscopy: Basic concepts and Instrumentation, Springer Link

### WEB SOURCES

- 1. <u>https://www.youtube.com/watch?v=0iQhirTf2PI</u>
- $2. \ \underline{https://www.coursera.org/lecture/spectroscopy/introduction-3N5D5}$
- 3. <u>https://www.coursera.org/lecture/spectroscopy/infrared-spectroscopy-8jEee</u>
- 4. <u>https://onlinecourses.nptel.ac.in/noc20\_cy08/preview</u>
- $5. \ \underline{https://www.coursera.org/lecture/spectroscopy/nmr-spectroscopy-introduction-XCWRu}$

### **COURSE OUTCOMES:**

### At the end of the course the student will be able to:

| <b>CO1</b> | Understand fundamentals of rotational spectroscopy, view molecules as           |            |
|------------|---------------------------------------------------------------------------------|------------|
|            | elastic rotors and interpret their behaviour. Able to quantify their nature and | K2         |
|            | correlate them with their characteristic properties.                            |            |
| CO2        | Understand the working principles of spectroscopic instruments and              |            |
|            | theoretical background of IR spectroscopy. Able to correlate mathematical       | KO KO      |
|            | process of Fourier transformations with instrumentation. Able to interpret      | K2, K3     |
|            | vibrational spectrum of small molecules.                                        |            |
| CO3        | Interpret structures and composition of molecules and use their knowledge       | К5         |
|            | of Raman Spectroscopy as an important analytical tool                           | K3         |
| CO4        | Use these resonance spectroscopic techniques for quantitative and               | K4         |
|            | qualitative estimation of a substances                                          | <b>N</b> 4 |
| CO5        | Learn the electronic transitions caused by absorption of radiation in the       |            |
|            | UV/Vis region of the electromagnetic spectrum and be able to analyze a          | K1, K5     |
|            | simple UV spectrum.                                                             |            |
| K          | 1 - Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 - Evalua            | ate        |

## MAPPING WITH PROGRAM OUTCOMES:

|     | <b>PO1</b> | PO2 | PO3 | PO4 | PO5 | PO6 | <b>PO7</b> | <b>PO8</b> | PO9 | <b>PO10</b> |
|-----|------------|-----|-----|-----|-----|-----|------------|------------|-----|-------------|
| CO1 | 3          | 3   | 3   | 2   | 3   | 3   | 3          | 3          | 3   | 2           |
| CO2 | 2          | 2   | 2   | 3   | 3   | 3   | 3          | 3          | 3   | 2           |
| CO3 | 3          | 2   | 3   | 3   | 3   | 3   | 3          | 3          | 3   | 3           |
| CO4 | 3          | 2   | 3   | 3   | 3   | 3   | 3          | 3          | 3   | 3           |
| CO5 | 3          | 3   | 3   | 3   | 3   | 3   | 3          | 3          | 3   | 3           |

|     | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 | PSO6 | PSO7 | PSO8 | PSO9 | PSO10 |
|-----|------|------|------|------|------|------|------|------|------|-------|
| CO1 | 3    | 3    | 3    | 2    | 3    | 3    | 3    | 3    | 3    | 2     |
| CO2 | 2    | 2    | 2    | 3    | 3    | 3    | 3    | 3    | 3    | 2     |
| CO3 | 3    | 2    | 3    | 3    | 3    | 3    | 3    | 3    | 3    | 3     |
| CO4 | 3    | 2    | 3    | 3    | 3    | 3    | 3    | 3    | 3    | 3     |
| CO5 | 3    | 3    | 3    | 3    | 3    | 3    | 3    | 3    | 3    | 3     |

## ELECTIVE -5B. CRYSTAL GROWTH AND THIN FILMS

| Subject<br>Code | Subject Name                     | Category | L | Т | Р | Credits | Inst. Hours | Marks |
|-----------------|----------------------------------|----------|---|---|---|---------|-------------|-------|
|                 | CRYSTAL GROWTH AND THIN<br>FILMS | Elective |   |   |   | 3       | 5           | 75    |

|              | Pre-Requisites                                                           |
|--------------|--------------------------------------------------------------------------|
| Fundamental  | s of Crystal Physics                                                     |
|              | Learning Objectives                                                      |
| $\checkmark$ | To acquire the knowledge on Nucleation and Kinetics of crystal growth    |
| $\succ$      | To understand the Crystallization Principles and Growth techniques       |
| $\succ$      | To study various methods of Crystal growth techniques                    |
| $\checkmark$ | To understand the thin film deposition methods                           |
| $\succ$      | To apply the techniques of Thin Film Formation and thickness Measurement |

| UNITS                                       | Course Details                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|---------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| UNIT I:<br>CRYSTAL GROWTH<br>KINETICS       | Basic Concepts, Nucleation and Kinetics of growth Ambient phase<br>equilibrium - super saturation - equilibrium of finite phases equation of<br>Thomson - Gibbs - Types of Nucleation - Formation of critical Nucleus -<br>Classical theory of Nucleation - Homo and heterogeneous formation of 3D<br>nuclei - rate of Nucleation - Growth from vapour phase solutions, solutions<br>and melts - epitaxial growth - Growth mechanism and classification -<br>Kinetics of growth of epitaxial films |
| UNIT II:<br>CRYSTALLIZATION<br>PRINCIPLES   | Crystallization Principles and Growth techniques Classes of Crystal system<br>- Crystal symmetry - Solvents and solutions - Solubility diagram - Super<br>solubility - expression for super saturation - Metastable zone and<br>introduction period - Miers TC diagram - Solution growth - Low and high<br>temperatures solution growth - Slow cooling and solvent evaporation<br>methods - Constant temperature bath as a Crystallizer.                                                           |
| UNIT III:<br>GEL, MELT AND<br>VAPOUR GROWTH | Gel, Melt and Vapour growth techniques Principle of Gel techniques -<br>Various types of Gel - Structure and importance of Gel - Methods of Gel<br>growth and advantages - Melt techniques - Czochralski growth - Floating<br>zone - Bridgeman method - Horizontal gradient freeze - Flux growth -<br>Hydrothermal growth - Vapour phase growth - Physical vapour deposition<br>- Chemical vapour deposition - Stoichiometry.                                                                      |

| UNIT IV:<br>THIN FILM<br>DEPOSITION<br>METHODS | Thin film deposition methods of thin film preparation, Thermal<br>evaporation, Electron beam evaporation, pulsed LASER deposition,<br>Cathodic sputtering, RF Magnetron sputtering, MBE, chemical vapour<br>deposition methods, Sol Gel spin coating, Spray pyrolysis, Chemical bath<br>deposition.                                                                                                                                              |
|------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| UNIT V:<br>THIN FILM<br>FORMATION              | Thin Film Formation and thickness Measurement Nucleation, Film<br>growth and structure - Various stages in Thin Film formation,<br>Thermodynamics of Nucleation, Nucleation theories, Capillarity model<br>and Atomistic model and their comparison. Structure of Thin Film, Roll<br>of substrate, Roll of film thickness, Film thickness measurement -<br>Interferometry, Ellipsometry, Micro balance, Quartz Crystal Oscillator<br>techniques. |

|             | 1 V. Markov Crustal growth for beginners: Eundementals of                                                            |
|-------------|----------------------------------------------------------------------------------------------------------------------|
|             | 1. V. Markov Crystal growth for beginners: Fundamentals of Nucleation, Crystal Growth and Epitaxy (2004) 2nd edition |
|             | 2. A. Goswami, Thin Film Fundamentals (New Age, New Delhi, 2008)                                                     |
|             |                                                                                                                      |
|             | 3. M. Ohora and R. C. Reid, "Modeling of Crystal Growth Rates from                                                   |
| TEXT BOOKS  | Solution"                                                                                                            |
|             | 4. 4. D. Elwell and H. J. Scheel, "Crystal Growth from High                                                          |
|             | Temperature Solution"                                                                                                |
|             | 5. Heinz K. Henish, 1973, "Crystal Growth in Gels", Cambridge                                                        |
|             | University Press. USA.                                                                                               |
|             | 1. J.C. Brice, Crystal Growth Process (John Wiley, New York, 1986)                                                   |
|             | 2. P. Ramasamy and F. D. Gnanam, 1983, "UGC Summer School                                                            |
|             | Notes".                                                                                                              |
| REFERENCE   | 3. P. SanthanaRaghavan and P. Ramasamy, "Crystal Growth                                                              |
| BOOKS       | Processes", KRU Publications.                                                                                        |
|             | 4. H.E. Buckley, 1951, Crystal Growth, John Wiley and Sons, NY                                                       |
|             | 5. B.R. Pamplin, 1980, Crystal Growth, Pergman Press, London.                                                        |
|             | 1. https://www.youtube.com/playlist?list=PLbMVogVj5nJRjLrXp3k                                                        |
|             | MtrI O8kZl1D1Jp                                                                                                      |
|             | 2. <u>https://www.youtube.com/playlist?list=PLFW6lRTa1g83HGEihgw</u>                                                 |
|             | <u>cy7 KeTLUuBu3WF</u>                                                                                               |
| WEB SOURCES | <ol> <li><u>https://www.youtube.com/playlist?list=PLADLRin7kNjG1Dlna9M</u><br/>DA 53CMKFHPSi9m</li> </ol>            |
|             | 4. https://www.youtube.com/playlist?list=PLXHedIxbyr8xIl_KQFs_                                                       |
|             | R_oky3Yd1Emw                                                                                                         |
|             | 5. https://www.electrical4u.com/thermal-conductivity-of-metals/                                                      |
|             |                                                                                                                      |

#### At the end of the course, the student will be able to:

| CO1        | Acquire the Basic Concepts, Nucleation and Kinetics of crystal growth    | K1     |  |  |  |  |  |
|------------|--------------------------------------------------------------------------|--------|--|--|--|--|--|
| CO2        | Understand the Crystallization Principles and Growth techniques          | K2, K4 |  |  |  |  |  |
| CO3        | Study various methods of Crystal growth techniques                       | K3     |  |  |  |  |  |
| <b>CO4</b> | Understand the Thin film deposition methods                              | K2     |  |  |  |  |  |
| CO5        | Apply the techniques of Thin Film Formation and thickness Measurement    | K3, K4 |  |  |  |  |  |
| K1 - R     | K1 - Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate; |        |  |  |  |  |  |

#### MAPPING WITH PROGRAM OUTCOMES:

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | <b>PO7</b> | <b>PO8</b> | PO9 | <b>PO10</b> |
|-----|-----|-----|-----|-----|-----|-----|------------|------------|-----|-------------|
| CO1 | 3   | 2   | 1   | 2   | 1   | 3   | 2          | 2          | 2   | 2           |
| CO2 | 3   | 3   | 1   | 3   | 1   | 2   | 3          | 2          | 2   | 1           |
| CO3 | 3   | 2   | 1   | 3   | 1   | 2   | 3          | 3          | 3   | 1           |
| CO4 | 3   | 2   | 1   | 2   | 1   | 2   | 3          | 3          | 3   | 1           |
| CO5 | 2   | 3   | 3   | 3   | 1   | 3   | 3          | 3          | 3   | 2           |

|     | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 | PSO6 | PSO7 | PSO8 | PSO9 | PSO10 |
|-----|------|------|------|------|------|------|------|------|------|-------|
| CO1 | 3    | 2    | 1    | 2    | 1    | 3    | 2    | 2    | 2    | 2     |
| CO2 | 3    | 3    | 1    | 3    | 1    | 2    | 3    | 2    | 2    | 1     |
| CO3 | 3    | 2    | 1    | 3    | 1    | 2    | 3    | 3    | 3    | 1     |
| CO4 | 3    | 2    | 1    | 2    | 1    | 2    | 3    | 3    | 3    | 1     |
| CO5 | 2    | 3    | 3    | 3    | 1    | 3    | 3    | 3    | 3    | 2     |

## ELECTIVE 5-C.GENERAL RELATIVITY ANDII YEAR -III SEMESTERCOSMOLOGYII YEAR -III SEMESTER

| Subject<br>Code | Subject Name                        | Category | L | Т | Р | Credits | Inst. Hours | Marks |
|-----------------|-------------------------------------|----------|---|---|---|---------|-------------|-------|
|                 | GENERAL RELATIVITY AND<br>COSMOLOGY | ELECTIVE |   |   |   | 3       | 5           | 75    |

| Pre-Requisites                                                                       |  |
|--------------------------------------------------------------------------------------|--|
| Skill in mathematics and mechanics                                                   |  |
| Learning Objectives                                                                  |  |
| To give an introduction to students in the areas of general relativity and according |  |

 $\succ$  To give an introduction to students in the areas of general relativity and cosmology

| UNITS                               | Course Details                                                                                                                                                                                                                                                                                                                                                                           |
|-------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| UNIT I:<br>TENSORS                  | Tensors in index notation - Kronecker and Levi Civita tensors - inner and outer<br>products - contraction - symmetric and antisymmetric tensors - quotient law -<br>metric tensors - covariant and contravariant tensors - vectors - the tangent space<br>- dual vectors - tensors - tensor products - the Levi-Civita tensor tensors in<br>Riemann spaces                               |
| UNIT I:<br>TENSORS FIELD            | Vector-fields, tensor-fields, transformation of tensors - gradient and Laplace<br>operator in general coordinates - covariant derivatives and Christoffel<br>connection - Elasticity: Field tensor - field energy tensor - strain tensor tensor<br>of elasticity- curvature tensor                                                                                                       |
| UNIT III:<br>GENERAL<br>RELATIVITY  | The spacetime interval - the metric - Lorentz transformations - space-time diagrams - world-lines - proper time - energy-momentum vector - energymomentum tensor - perfect fluids - energy-momentum conservation - parallel transport - the parallel propagator - geodesics - affine parameters - the Riemann curvature tensor - symmetries of the Riemann tensor - the Bianchi identity |
| UNIT IV:<br>TENSOR IN<br>RELATIVITY | Ricci and Einstein tensors - Weyl tensor - Killing vectors - the Principle of<br>Equivalence - gravitational redshift - gravitation as space-time curvature - the<br>Newtonian limit - physics in curved space-time - Einstein's equations - the Weak<br>Energy Condition - causality - spherical symmetry - the Schwarzschild metric -<br>perihelion precession                         |

| UNIT V:<br>COSMOLOGY |
|----------------------|
|----------------------|

|           | 1. M. R. Spiegel, <i>Vector Analysis, Schaum'a outline series</i> , McGraw Hill, New York, 1974.                              |
|-----------|-------------------------------------------------------------------------------------------------------------------------------|
|           | 2. James Hartle, <i>Gravity: An introduction to Einstein's general relativity</i> , San Francisco, Addison-Wesley, 2002       |
| TEXT      | 3. Sean Carroll, <i>Spacetime and Geometry: An Introduction to General Relativity</i> , (Addison-Wesley, 2004).               |
| BOOKS     | 4. Jerzy Plebanskiand Andrzej Krasinski, An Introduction to General Relativity and Cosmology, Cambridge University Press 2006 |
|           | 5. Meisner, Thorne and Wheeler: <i>Gravitation</i> W. H. Freeman & Co., San Francisco 1973                                    |
|           | 1. Robert M. Wald: Space, Time, and Gravity: the Theory of the Big Bang and                                                   |
|           | Black Holes, Univ. of Chicago Press.                                                                                          |
| DEFEDENCE | 2. J. V. Narlikar, Introduction to Cosmology, Jones & Bartlett 1983                                                           |
| REFERENCE | 3. Steven Weinberg, Gravitation and Cosmology, New York, Wiley, 1972.                                                         |
| BOOKS     | 4. Jerzy Plebanski and Andrzej Krasinski, An Introduction to General                                                          |
|           | Relativity and Cosmology, Cambridge University Press 2006                                                                     |
|           | 5. R Adler, M Bazin& M Schiffer, Introduction to General Relativity                                                           |
|           | 1. http://www.fulviofrisone.com/attachments/article/486/A%20First%20Course                                                    |
|           | %20In%20General%20Relativity%20-%20Bernard%20F.Schutz.pdf                                                                     |
|           | 2. https://link.springer.com/book/9780387406282                                                                               |
| WEB       | 3. <u>https://ocw.mit.edu/courses/8-962-general-relativity-spring-</u>                                                        |
| SOURCES   | 2020/resources/lecture-18-cosmology-i/                                                                                        |
|           | 4. <u>https://arxiv.org/abs/1806.10122</u>                                                                                    |
|           | 5. <u>https://uwaterloo.ca/applied-mathematics/future-undergraduates/what-</u>                                                |
|           | youcan-learn-applied-mathematics/relativity-and-cosmology                                                                     |

#### At the end of the course, the student will be able to:

| CO1      | Skillfully handle tensors                                                               | K1     |
|----------|-----------------------------------------------------------------------------------------|--------|
| CO2      | Understanding of the underlying theoretical aspects of general relativity and cosmology | K2     |
| CO3      | Gain knowledge on space time curvature                                                  | K1     |
| CO4      | Equipped to take up research in cosmology                                               | K3, K4 |
| CO5      | Confidently solve problems using mathematical skills                                    | K5     |
| K1 - Ren | nember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate;                       |        |

## MAPPING WITH PROGRAM OUTCOMES:

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|
| CO1 | 3   | 3   | 1   | 3   | 2   | 3   | 2   | 2   | 2   | 2    |
| CO2 | 3   | 3   | 1   | 3   | 2   | 3   | 2   | 2   | 2   | 2    |
| CO3 | 3   | 2   | 1   | 2   | 1   | 2   | 1   | 1   | 3   | 2    |
| CO4 | 3   | 2   | 1   | 2   | 1   | 2   | 1   | 1   | 3   | 2    |
| CO5 | 3   | 2   | 1   | 2   | 1   | 2   | 1   | 1   | 3   | 2    |

|     | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 | PSO6 | PSO7 | PSO8 | PSO9 | PSO10 |
|-----|------|------|------|------|------|------|------|------|------|-------|
| CO1 | 3    | 3    | 1    | 3    | 2    | 3    | 2    | 2    | 2    | 2     |
| CO2 | 3    | 3    | 1    | 3    | 2    | 3    | 2    | 2    | 2    | 2     |
| CO3 | 3    | 2    | 1    | 2    | 1    | 2    | 1    | 1    | 3    | 2     |
| CO4 | 3    | 2    | 1    | 2    | 1    | 2    | 1    | 1    | 3    | 2     |
| CO5 | 3    | 2    | 1    | 2    | 1    | 2    | 1    | 1    | 3    | 2     |

#### Elective 6-A. ELECTROMAGNETIC THEORY

#### **II YEAR – FOURTH SEMESTER**

| Subject<br>Code | Subject Name           | Category | L | Т | Р | Credits | Inst. Hours | Marks |
|-----------------|------------------------|----------|---|---|---|---------|-------------|-------|
|                 | ELECTROMAGNETIC THEORY | Elective |   |   |   | 3       | 6           | 75    |

#### **Pre-Requisites**

Knowledge of different coordinate systems, Laplace's equation, conducting & non-conducting medium, basic definitions in magnetism, propagation of electromagnetic waves, plasma

#### **Learning Objectives**

- To acquire knowledge about boundary conditions between two media and the technique of method of separation of variables
- > To understand Biot Savart's law and Ampere's circuital law
- To comprehend the physical ideas contained in Maxwell's equations, Coulomb & Lorentz gauges, conservation laws
- To assimilate the concepts of propagation, polarization, reflection and refraction of electromagnetic waves
- > To grasp the concept of plasma as the fourth state of matter

#### **UNIT I: ELECTROSTATICS**

Boundary value problems and Laplace equation – Boundary conditions and uniqueness theorem – Laplace equation in three dimension – Solution in Cartesian and spherical polar coordinates – Examples of solutions for boundary value problems. Polarization and displacement vectors - Boundary conditions - Dielectric sphere in a uniform field – Molecular polarizability and electrical susceptibility – Electrostatic energy in the presence of dielectric – Multipole expansion.

## **UNIT II: MAGNETO STATICS**

Biot-Savart's Law - Ampere's law - Magnetic vector potential and magnetic field of a localized current distribution - Magnetic moment, force and torque on a current distribution in an external field - Magneto static energy - Magnetic induction and magnetic field in macroscopic media - Boundary conditions - Uniformly magnetized sphere.

### UNIT III: MAXWELL EQUATIONS

Faraday's laws of Induction - Maxwell's displacement current - Maxwell's equations - Vector and scalar potentials - Gauge invariance - Wave equation and plane wave solution- Coulomb and Lorentz gauges - Energy and momentum of the field - Poynting's theorem - Lorentz force - Conservation laws for a system of charges and electromagnetic fields.

### **UNIT IV: WAVE PROPAGATION**

Plane waves in non-conducting media - Linear and circular polarization, reflection and refraction at a plane interface - Waves in a conducting medium - Propagation of waves in a rectangular wave guide. Inhomogeneous wave equation and retarded potentials - Radiation from a localized source -Oscillating electric dipole

### **UNIT V: ELEMENTARY PLASMA PHYSICS**

The Boltzmann Equation - Simplified magneto-hydrodynamic equations - Electron plasma oscillations - The Debye shielding problem - Plasma confinement in a magnetic field - Magneto-hydrodynamic waves - Alfven waves and magneto sonic waves.

## TEXT BOOKS

1. D. J.Griffiths , 2002, Introduction to Electrodynamics, 3rd Edition, Prentice-Hall of India, New Delhi.

2. J. R. Reitz, F. J. Milford and R. W. Christy, 1986, Foundations of Electromagnetic Theory, 3rd edition, Narosa Publishing House, New Delhi.

- 3. J. D. Jackson, 1975, Classical Electrodynamics, Wiley Eastern Ltd. New Delhi.
- 4. J. A. Bittencourt, 1988, Fundamentals of Plasma Physics, Pergamon Press, Oxford.
- 5. Gupta, Kumar and Singh, Electrodynamics, S. Chand & Co., New Delhi

### **REFERENCE BOOKS**

- 1. W. Panofsky and M. Phillips, 1962, *Classical Electricity and Magnetism*, Addison Wesley, London.
- 2. J. D. Kraus and D. A. Fleisch, 1999, *Electromagnetics with Applications*, 5<sup>th</sup> Edition, WCB McGraw-Hill, New York.
- 3. B. Chakraborty, 2002, Principles of Electrodynamics, Books and Allied, Kolkata.
- 4. P. Feynman, R. B. Leighton and M. Sands, 1998, *The Feynman Lectures on Physics*, Vols. 2, Narosa Publishing House, New Delhi.
- 5. Andrew Zangwill, 2013, Modern Electrodynamics, Cambridge University Press, USA

#### WEB SOURCES

- 1. http://www.plasma.uu.se/CED/Book/index.html
- 2. http://www.thphys.nuim.ie/Notes/electromag/frame-notes.html
- 3. http://www.thphys.nuim.ie/Notes/em-topics/em-topics.html
- 4. http://dmoz.org/Science/Physics/Electromagnetism/Courses\_and\_Tutorials/
- 5. https://www.cliffsnotes.com/study-guides/physics/electricity-and-

magnetism/electrostatics

#### **COURSE OUTCOMES:**

#### At the end of the course the student will be able to:

| CO1 | Solve the differential equations using Laplace equation and to find solutions for boundary value problems                                                                                                         | K1, K5 |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| CO2 | Use Biot-Savart's law and Ampere circuital law to find the magnetic induction & magnetic vector potential for various physical problems                                                                           | K2, K3 |
| CO3 | Apply Maxwell's equations to describe how electromagnetic field behaves<br>in different media                                                                                                                     | К3     |
| CO4 | Apply the concept of propagation of EM waves through wave guides in optical fiber communications and also in radar installations, calculate the transmission and reflection coefficients of electromagnetic waves |        |
| CO5 | Investigate the interaction of ionized gases with self-consistent electric and magnetic fields                                                                                                                    | K5     |

## **MAPPING WITH PROGRAM OUTCOMES:**

|     | <b>PO1</b> | PO2 | PO3 | PO4 | PO5 | PO6 | <b>PO7</b> | PO8 | PO9 | <b>PO10</b> |
|-----|------------|-----|-----|-----|-----|-----|------------|-----|-----|-------------|
| CO1 | 3          | 3   | 3   | 1   | 2   | 2   | 3          | 3   | 1   | 3           |
| CO2 | 3          | 3   | 3   | 1   | 2   | 2   | 3          | 3   | 1   | 3           |
| CO3 | 3          | 3   | 3   | 1   | 2   | 2   | 3          | 3   | 1   | 3           |
| CO4 | 3          | 3   | 3   | 1   | 2   | 2   | 3          | 3   | 1   | 3           |
| CO5 | 3          | 3   | 3   | 1   | 2   | 2   | 3          | 3   | 1   | 3           |

|     | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 | PSO6 | PSO7 | PSO8 | PSO9 | PSO10 |
|-----|------|------|------|------|------|------|------|------|------|-------|
| CO1 | 3    | 3    | 3    | 1    | 2    | 2    | 3    | 3    | 1    | 3     |
| CO2 | 3    | 3    | 3    | 1    | 2    | 2    | 3    | 3    | 1    | 3     |
| CO3 | 3    | 3    | 3    | 1    | 2    | 2    | 3    | 3    | 1    | 3     |
| CO4 | 3    | 3    | 3    | 1    | 2    | 2    | 3    | 3    | 1    | 3     |
| CO5 | 3    | 3    | 3    | 1    | 2    | 2    | 3    | 3    | 1    | 3     |

| ELECTIV 6-B. | QUANTUM FIELD | II YEAR – FOURTH SEMESTER |
|--------------|---------------|---------------------------|
|              | THEORY        |                           |

| Subject<br>Code | Subject Name         | Category | L | Т | Р | Credits | Inst. Hours | Marks |
|-----------------|----------------------|----------|---|---|---|---------|-------------|-------|
|                 | QUANTUM FIELD THEORY | ELECTIVE |   |   |   | 3       | 6           | 75    |

|                  | Pre-Requisites                                                                               |  |  |  |  |  |  |
|------------------|----------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Prior ex         | Prior exposure on fundamentals of Quantum mechanics and Special Relativity will be essential |  |  |  |  |  |  |
|                  | Learning Objectives                                                                          |  |  |  |  |  |  |
| $\checkmark$     | To school the students about the analytical and numerical techniques of nonlinear            |  |  |  |  |  |  |
| dyna             | amics.                                                                                       |  |  |  |  |  |  |
| $\triangleright$ | To make the students understand the concepts of various coherent structures.                 |  |  |  |  |  |  |
| $\triangleright$ | To train the students on bifurcations and onset of chaos.                                    |  |  |  |  |  |  |
| $\triangleright$ | To educate the students about the theory of chaos and its characterization.                  |  |  |  |  |  |  |
| $\succ$          | To make the students aware of the applications of solitons, chaos and fractals.              |  |  |  |  |  |  |

To make the students aware of the applications of solitons, chaos and fractals.  $\triangleright$ 

| UNITS                                                | Course Details                                                                                                                                                                                                                                                                                                                                                                                   |
|------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| UNIT I:<br>SYMMETRY<br>PRINCIPLES                    | Relativistic kinematics, relativistic waves, Klein-Gordon (KG)<br>equation as a relativistic wave equation, treatment of the KG equation<br>as a classical wave equation: its Lagrangian and Hamiltonian,<br>Noether's theorem and derivation of energy-momentum and angular<br>momentum tensors as consequence of Poincaré symmetry, internal<br>symmetry and the associated conserved current. |
| UNIT II:<br>QUANTIZATION OF<br>KLEIN-GORDAN<br>FIELD | Canonical quantization of the KG field, solution of KG theory in<br>Schrödinger and Heisenberg pictures, expansion in terms of creation<br>and annihilation operators, definition of the vacuum and N-particle<br>eigenstates of the Hamiltonian, vacuum expectation values,<br>propagators, spin and statistics of the KG quantum.                                                              |
| UNIT III:<br>QUANTIZATION OF<br>DIRAC FIELD          | Review of Dirac equation and its quantization, use of anti commutators, creation and destruction operators of particles and antiparticles, Dirac propagator, energy, momentum and angular momentum, spin and statistics of Dirac quanta.                                                                                                                                                         |

| UNIT IV:                                                | Review of free Maxwell's equations, Lagrangian, gauge                                                                                                                                     |
|---------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| QUANTIZATION OF                                         | transformation and gauge fixing, Hamiltonian, quantization in terms of                                                                                                                    |
| ELECTROMAGNETIC                                         | transverse delta functions, expansion in terms of creation operators,                                                                                                                     |
| FIELDS                                                  | spin, statistics and propagator of the photon.                                                                                                                                            |
| UNIT V:<br>PERTURBATIVE<br>INTERACTION AT<br>TREE LEVEL | Introduction to interacting quantum fields, Wick's Theorem, Feynman Diagram, Examples from quantum electrodynamics at the tree level: positron-electron and electron-electron scattering. |

|            | 1. J. D. BjorkenandS. D. Drell, Relativistic Quantum Fields David          |
|------------|----------------------------------------------------------------------------|
|            | 2. An Introduction to Quantum Field Theory by M. Peskin and D. V.          |
|            | Schroeder                                                                  |
|            | 3. Quantum Field theory: From Operators to Path Integrals, 2nd edition by  |
| TEXT BOOKS | Kerson Huang                                                               |
|            | 4. Quantum Field Theory by Mark Srednicki                                  |
|            | 5. Quantum Field Theory by Claude Itzykson and Jean Bernard Zuber.         |
| _          | 1. V.B.                                                                    |
|            | Berestetskii, E.M. Lifshitzand L.P. Pitaevskii, Quantum Electrodynamics    |
| REFERENCE  | 2. Introduction to the Theory of Quantized Fields by N. N. Bogoliubov and  |
| BOOKS      | D. V. Shirkov (1959)                                                       |
| DOORS      | 3. Quantum Field Theory by L. H. Ryder (1984)                              |
|            | 4. Quantum Field Theory by L. S. Brown (1992)                              |
|            | 5. Quantum Field Theory: A Modern Introduction by M. Kaku (1993)           |
|            | 1. https://homepages.dias.ie/ydri/QFTNOTES4v2.pdf                          |
|            | 2. https://www.scirp.org/(S(i43dyn45teexjx455qlt3d2q))/reference/reference |
| WEB        | spapers.aspx?referenceid=2605249                                           |
| SOURCES    | 3. https://archive.nptel.ac.in/courses/115/106/115106065/ 4.               |
|            | http://www.nhn.ou.edu/~milton/p6433/p6433.html                             |
|            | 5. https://plato.stanford.edu/entries/quantum-field-theory/                |

#### At the end of the course, the student will be able to:

| <b>CO1</b> | Understand the interconnection of Quantum Mechanics and Special          | K1     |  |  |  |
|------------|--------------------------------------------------------------------------|--------|--|--|--|
|            | Relativity                                                               |        |  |  |  |
| CO2        | Enable the students to understand the method of quantization to various  | K2     |  |  |  |
|            | field                                                                    |        |  |  |  |
| CO3        | Employ the creation and annihilation operators for quantization          | K5     |  |  |  |
| CO4        | Summarizes the interacting field, in quantum domain, and gives a         |        |  |  |  |
|            | discussion on how perturbation theory is used here.                      | K1, K3 |  |  |  |
| CO5        | Understand the concept of Feynman diagram                                | K2     |  |  |  |
| K1 - Re    | K1 - Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate; |        |  |  |  |

#### MAPPING WITH PROGRAM OUTCOMES:

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | <b>PO7</b> | PO8 | PO9 | PO10 |
|-----|-----|-----|-----|-----|-----|-----|------------|-----|-----|------|
| C01 | 3   | 3   | 3   | 2   | 3   | 2   | 3          | 3   | 2   | 3    |
| CO2 | 3   | 3   | 3   | 2   | 3   | 3   | 3          | 3   | 2   | 3    |
| CO3 | 3   | 3   | 3   | 2   | 3   | 2   | 3          | 3   | 2   | 3    |
| CO4 | 3   | 3   | 3   | 2   | 3   | 3   | 3          | 3   | 2   | 3    |
| CO5 | 3   | 3   | 3   | 2   | 3   | 3   | 3          | 3   | 2   | 3    |

|     | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 | PSO6 | PSO7 | PSO8 | PSO9 | PSO10 |
|-----|------|------|------|------|------|------|------|------|------|-------|
| CO1 | 3    | 3    | 3    | 2    | 3    | 2    | 3    | 3    | 2    | 3     |
| CO2 | 3    | 3    | 3    | 2    | 3    | 3    | 3    | 3    | 2    | 3     |
| CO3 | 3    | 3    | 3    | 2    | 3    | 2    | 3    | 3    | 2    | 3     |
| CO4 | 3    | 3    | 3    | 2    | 3    | 3    | 3    | 3    | 2    | 3     |
| CO5 | 3    | 3    | 3    | 2    | 3    | 3    | 3    | 3    | 2    | 3     |

# ELECTIVE 6-C. ADVANCED MATHEMATICAL II YEAR - FOURTH SEMESTER PHYSICS

| Subject<br>Code | Subject Name                     | Category | L | Т | Р | Credits | Inst. Hours | Marks |
|-----------------|----------------------------------|----------|---|---|---|---------|-------------|-------|
|                 | ADVANCED MATHEMATICAL<br>PHYSICS | ELECTIVE |   |   |   | 3       | 6           | 75    |

| Pre-Requisites                                                                                                                     |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Good knowledge in basic mathematics                                                                                                |  |  |  |
| Learning Objectives                                                                                                                |  |  |  |
| To educate and involve students in the higher level of mathematics and mathematical methods<br>relevant and applicable to Physics. |  |  |  |

| UNITS                                     | Course Details                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| UNIT I:<br>DISCRETE<br>GROUPS             | Definition of a group, subgroup, class, Lagrange's theorem, invariant<br>subgroup, Homomorphism and isomorphism between two groups.<br>Representation of a group, unitary representations, reducible and irreducible<br>representations Schur's lemmas, orthogonality theorem, character table,<br>reduction of Kronecker product of representations, criterion for<br>irreducibility of a representation.                                                                                                                                                                                                                                           |
| UNIT II:<br>CONTINUOUS<br>GROUPS          | Infinitesimal generators, Lie algebra; Rotation group, representations of the Lie algebra of the rotation group, representation of the rotation group, D-matrices and their basic properties. Addition of two angular momenta and C.G. coefficients, Wigner-Eckart theorem.                                                                                                                                                                                                                                                                                                                                                                          |
| UNIT III:<br>SPECIAL<br>UNITARY<br>GROUPS | Definition of unitary, unimodular groups SU(2) and SU(3). Lie algebra of SU(2). Relation between SU(2) and rotation group. Lie algebra of SU(3) Gellmann's matrices. Cartan form of the SU(3). Lie algebra, roots and root diagram for SU(3). Weights and their properties, weight diagrams for the irreducible representations $3.3^*$ -, $6,6~8$ , $10~and~10~of~SU(3)$ . Direct product of two SU(3) representations, Young tableaux method of decomposition of products of IR's illustrations with the representations. SU(3) symmetry in elementary particle physics, quantum numbers of hadrons and SU(2) and SU(3) classification of hadrons. |

| UNIT IV:<br>TENSORS           | Cartesian vectors and tensors illustration with moment of inertia, conductivity, dielectric tensors. Four vector in special relativity, vectors and tensors under Lorentz transformations, Illustration from physics. Vectors and tensors under general co-ordinate transformations, contravariant and covariant vectors and tensors, mixed tensors; tensor algebra, addition, subtraction, direct product of tensors, quotient theorem, symmetric and antisymmetric tensors. |
|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| UNIT V:<br>TENSOR<br>CALCULUS | Parallel transport, covariant derivative, affine connection. Metric tensor.<br>Expression for Christoffel symbols in terms of and its derivatives (assuming $D g = 0$ . Curvature tensor, Ricci tensor and Einstein tensor. Bianchi identities, Schwarzschild solution to the Einstein equation G=0.                                                                                                                                                                          |

|             | 1. A.W.Joshi, Group Theory for Physicists                             |
|-------------|-----------------------------------------------------------------------|
|             | 2. D.B.Lichtenberg, Unitary Symmetry and Elementary Particles         |
| TEXT BOOKS  | 3. E.Butkov, Mathematical Physics                                     |
| IEAI DUURS  | 4. J.V.Narlikar, General Relativity & Cosmology                       |
|             | 5. R. Geroch, Mathematical Physics, The University of Chicago press   |
|             | (1985).                                                               |
|             | 1. M.Hamermesh <i>Group Theory</i>                                    |
|             | 2. M.E.Rose: Elementary Theory of Angular Momentum                    |
| REFERENCE   | 3. Georgi : Lie Groups for Physicists                                 |
| BOOKS       | 4. E.A.Lord: Tensors, Relativity & Cosmology                          |
|             | 5. P. Szekeres, A course in modern mathematical physics: Groups,      |
|             | Hilbert spaces and differential geometry, Cambridge University Press. |
|             | 1. https://vdoc.pub/documents/unitary-symmetry-and-elementary-        |
|             | particlesc4qsfejthkc0                                                 |
|             | 2. https://physics.iith.ac.in/HEP_Physics/slides/poplawskitalk.pdf    |
| WEB SOURCES | 3. https://www.hindawi.com/journals/amp/                              |
|             | 4. https://projecteuclid.org/journals/advances-in-theoretical-        |
|             | andmathematical-physics                                               |
|             | 5. <u>https://www.springer.com/journal/11232</u>                      |

#### At the end of the course, the student will be able to:

| CO1                                                                      | Gained knowledge of both discrete and continuous groups                     |                            |    |  |  |  |  |
|--------------------------------------------------------------------------|-----------------------------------------------------------------------------|----------------------------|----|--|--|--|--|
| CO2                                                                      | Apply various important theorems in group theory                            | heorems in group theory K3 |    |  |  |  |  |
| CO3                                                                      | Construct group multiplication table, character table relevant to important | V5                         | V5 |  |  |  |  |
|                                                                          | branches of physics.                                                        | NЭ                         |    |  |  |  |  |
| CO4                                                                      | Equipped to solve problems in tensors                                       | K4,                        | K5 |  |  |  |  |
| CO5                                                                      | Developed skills to apply group theory and tensors to peruse research       | K2,                        | K3 |  |  |  |  |
| K1 - Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate; |                                                                             |                            |    |  |  |  |  |

## MAPPING WITH PROGRAM OUTCOMES:

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | <b>PO7</b> | <b>PO8</b> | PO9 | PO10 |
|-----|-----|-----|-----|-----|-----|-----|------------|------------|-----|------|
| CO1 | 3   | 3   | 2   | 1   | 1   | 2   | 1          | 2          | 3   | 3    |
| CO2 | 3   | 3   | 2   | 1   | 1   | 1   | 1          | 2          | 3   | 2    |
| CO3 | 3   | 3   | 2   | 1   | 2   | 2   | 1          | 2          | 3   | 2    |
| CO4 | 3   | 3   | 2   | 2   | 1   | 2   | 1          | 2          | 3   | 2    |
| CO5 | 3   | 3   | 2   | 2   | 2   | 1   | 1          | 2          | 3   | 2    |

|     | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 | PSO6 | PSO7 | PSO8 | PSO9 | PSO10 |
|-----|------|------|------|------|------|------|------|------|------|-------|
| CO1 | 3    | 3    | 2    | 1    | 1    | 2    | 1    | 2    | 3    | 3     |
| CO2 | 3    | 3    | 2    | 1    | 1    | 1    | 1    | 2    | 3    | 2     |
| CO3 | 3    | 3    | 2    | 1    | 2    | 2    | 1    | 2    | 3    | 2     |
| CO4 | 3    | 3    | 2    | 2    | 1    | 2    | 1    | 2    | 3    | 2     |
| CO5 | 3    | 3    | 2    | 2    | 2    | 1    | 1    | 2    | 3    | 2     |